资源信息
丁建丽, 塔西甫拉提·特依拜, 田源, 韦建波, 依力亚斯江·努尔麦麦提, 张飞
2008, 30(8): 1268-1274.
遥感图像的分类是研究土地变化的基础。传统的遥感图像分类存在着精度不高,不确定性强的特点。本文使用支持向量机(SVM,Support Vector Machine)技术对遥感图像分类,并与传统的最大似然分类进行对比试验。结果表明不同参数组合下SVM的分类总精度和Kappa指数普遍高于最大似然分类的结果,其最高总精度高出最大似然分类0.9779%。SVM和最大似然分类结果都存在着类别混分,但是SVM混分程度远小于最大似然分类,其精度保持在可接受的范围内,如对于低密度草而言,最大似然分类的用户精度下降到84.68%,而支持向量机的用户精度虽然也有下降但还是保持在92.31%。SVM在样本数目很少的情况下表现出了出色的学习能力,是机器学习领域很有希望的一种学习方法。