资源科学 ›› 2018, Vol. 40 ›› Issue (8): 1658-1671.doi: 10.18402/resci.2018.08.15
韩项1,2(), 尹云鹤1(
), 吴绍洪1,2, 邓浩宇1,2
收稿日期:
2018-03-22
修回日期:
2018-05-30
出版日期:
2018-08-25
发布日期:
2018-08-10
作者简介:
作者简介:韩项,女,河北石家庄人,硕士生,主要从事陆面水热过程模拟研究。E-mail:
基金资助:
Xiang HAN1,2(), Yunhe YIN1(
), Shaohong WU1,2, Haoyu DENG1,2
Received:
2018-03-22
Revised:
2018-05-30
Online:
2018-08-25
Published:
2018-08-10
摘要:
蒸散是水循环和能量循环的重要过程,也是连接土壤-植被-大气系统的关键纽带。气候变化背景下,蒸散的时空分布研究可为地区水资源合理配置及应对气候变化提供科学基础。本文基于结合GRACE(Gravity Recovery and Climate Experiment)数据的水量平衡方法模拟黄土高原汾沁地区2003—2015年蒸散量,并分析其不同时间尺度的变化特征,结果表明:①结合水储量变化的水量平衡方法与忽略水储量变化的水量平衡方法模拟所得蒸散相比,前者时间序列上波动更平稳(变异系数、标准差、极端值分别减少0.12,5.50mm,3.20%),可更精确地反映汾沁地区实际蒸散在年和季节尺度上的变化规律;②研究区2003—2015年均蒸散量为530.19mm,空间分布上由北向南大致增加,年际波动较平稳(变异系数为0.08),其中2010年蒸散量最低(478.22mm),2011年蒸散量最高(614.57mm);③季节尺度上,夏季平均蒸散量最高(263.36mm),占全年蒸散量的49.67%,波动较平稳;冬季蒸散量最低(19.50mm),离散程度较大;④汾沁地区2003—2015年蒸散变化主要受温度、降水的影响,其年际波动主要与降水相关。
韩项, 尹云鹤, 吴绍洪, 邓浩宇. 汾沁地区蒸散模拟及其时空变化特征[J]. 资源科学, 2018, 40(8): 1658-1671.
Xiang HAN, Yunhe YIN, Shaohong WU, Haoyu DENG. Evapotranspiration simulation and its spatio-temporal variation characteristics in Fenqin Region[J]. Resources Science, 2018, 40(8): 1658-1671.
表2
2003—2015年汾沁地区年及季节尺度平均蒸散量"
全年 | 春季 | 夏季 | 秋季 | 冬季 | |
---|---|---|---|---|---|
汾沁地区均值 | 530.19 | 123.93 | 263.36 | 123.39 | 19.50 |
汾河流域均值 | 513.67 | 113.74 | 258.57 | 124.34 | 17.02 |
静乐以上区间 | 378.82 | 65.21 | 245.31 | 87.04 | 0.00 |
岚河流域 | 503.84 | 88.74 | 276.35 | 125.39 | 13.36 |
静乐-汾河水库区间 | 584.44 | 54.40 | 304.32 | 180.97 | 44.74 |
汾河水库-寨上区间 | 548.68 | 111.05 | 291.67 | 132.68 | 13.27 |
寨上-兰村区间 | 590.31 | 119.09 | 305.88 | 144.27 | 21.07 |
潇河上游芦家庄区间 | 523.93 | 113.00 | 295.97 | 101.74 | 13.23 |
兰村-汾河二坝区间 | 487.79 | 118.17 | 259.39 | 105.50 | 4.74 |
文峪河流域 | 462.62 | 81.18 | 259.50 | 115.35 | 6.58 |
汾河二坝-义棠区间 | 481.55 | 110.89 | 239.20 | 114.31 | 17.15 |
义棠-赵城区间 | 554.13 | 129.47 | 268.38 | 134.90 | 21.38 |
赵城-柴庄区间 | 558.47 | 136.15 | 257.64 | 138.57 | 26.10 |
浍河流域 | 567.54 | 154.55 | 248.67 | 139.16 | 25.16 |
柴庄-河津区间 | 528.89 | 132.35 | 227.70 | 138.43 | 30.42 |
沁河流域均值 | 577.18 | 152.93 | 276.98 | 120.69 | 26.56 |
孔家坡以上区间 | 513.85 | 126.43 | 274.22 | 98.99 | 14.22 |
孔家坡-飞岭区间 | 525.11 | 129.16 | 262.84 | 107.89 | 25.21 |
飞岭-润城区间 | 596.65 | 154.30 | 279.51 | 132.41 | 30.43 |
润城-五龙口区间 | 515.41 | 151.04 | 254.22 | 94.95 | 15.19 |
五龙口-武陟区间 | 580.65 | 141.71 | 277.42 | 116.96 | 44.56 |
丹河流域 | 641.02 | 180.14 | 295.36 | 138.21 | 27.29 |
[47] | 周倜, 彭志晴, 辛晓洲, 等. 非均匀地表蒸散遥感研究综述[J]. 遥感学报, 2016, 20(2): 257-277. |
[Zhou T, Peng Z Q, Xin X Z, et al. Remote sensing research of evapotranspiration over heterogeneous surfaces: a review[J]. Journal of Remote Sensing, 2016, 20(2): 257-277. ] | |
[48] | Li X, He Y, Zeng Z, et al. Spatiotemporal pattern of terrestrial evapotranspiration in China during the past thirty years[J]. Agricultural & Forest Meteorology, 2018, 259: 131-140. |
[49] | 水利部黄河水利委员会. 2003年黄河水资源公报[R]. 郑州: 黄河水利出版社, 2003. |
[Yellow River Conservancy Commission of the Ministry of Water Resources. Yellow River Water Resources Bulletin in 2003[R]. Zhengzhou: The Yellow River Water Conservancy Press, 2003. ] | |
[50] | Wu C, Hu B X, Huang G, et al. Effects of climate and terrestrial storage on temporal variability of actual evapotranspiration[J]. Journal of Hydrology, 2017, 549: 388-403. |
[51] | 南朝, 高玲, 时乐, 等. 调水工程中的水量平衡分析[J]. 城市道桥与防洪, 2011, (4): 104-107. |
[Nan C, Gao L, Shi L, et al. Analysis of water balance in water diversion project[J]. Urban Roads Bridges & Flood Control, 2011, (4): 104-107. ] | |
[1] | Brutsaert W.Hydrology: An Introduction[M]. New York: Cambridge University Press, 2005. |
[2] | Oki T, Kanae S.Global hydrological cycles and world water resources[J]. Science, 2006, 313(5790): 1068-1072. |
[3] | Bonan G B, Pollard D, Thompson S L.Effects of boreal forest vegetation on global climate[J]. Nature, 1992(359): 716-718. |
[4] | Jung M, Reichstein M, Ciais P, et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply[J]. Nature, 2010, 467(7318): 951-954. |
[5] | Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Cambridge: IPCC Fifth Assessment Report: Climate Change, 2013. |
[6] | Zhang K, Kimball J S, Nemani R R, et al. Vegetation greening and climate change promote multi-decadal rises of global land evapotranspiration[J]. Scientific Reports, 2014, 5(2): 75-77. |
[7] | Zhang Y, Penaarancibia J L, Mcvicar T R, et al. Multi-decadal trends in global terrestrial evapotranspiration and its components[J]. Scientific Reports, 2016, DOI: 10. 1038/srep19124. |
[8] | Wang W, Cui W, Wang X, et al. Evaluation of GLDAS-1 and GLDAS-2 forcing data and Noah model simulations over China at monthly scale[J]. Journal of Hydrometeorology, 2016, 17(11): 2815-2833. |
[9] | Mu Q, Zhao M, Running S W.Improvements to a MODIS global terrestrial evapotranspiration algorithm[J]. Remote Sensing of Environment, 2011, 115(8): 1781-1800. |
[10] | Miealles D G, Holmes T R, De-jeu R A, et al. Global land-surface evaporation estimated from satellite-based observations[J]. Hydrology and Earth System Science, 2011, 15(2): 453-469. |
[11] | Li Y, Liang K, Liu C, et al. Evaluation of different evapotranspiration products in the middle Yellow River Basin, China[J]. Hydrology Research, 2017, 48(2): 1-16. |
[12] | Liu W, Wang L, Zhou J, et al. A worldwide evaluation of basin-scale evapotranspiration estimates against the water balance method[J]. Journal of Hydrology, 2016, 538: 82-95. |
[13] | 姜艳阳, 王文, 周正昊. MODIS MOD16蒸散发产品在中国流域的质量评估[J]. 自然资源学报, 2017, 32(3): 517-528. |
[Jiang Y Y, Wang W, Zhou Z H.Evaluation of MODIS MOD16 evapotranspiration product in Chinese river basins[J]. Journal of Natural Resources, 2017, 32(3): 517-528. ] | |
[14] | Zeng Z, Piao S, Lin X, et al. Global evapotranspiration over the past three decades: estimation based on the water balance equation combined with empirical models[J]. Environmental Research Letters, 2012, 7(1): 1-8. |
[15] | Mao Y, Wang K.Comparison of evapotranspiration estimates based on the surface water balance, modified Penman-Monteith model, and reanalysis data sets for continental China[J]. Journal of Geophysical Research Atmospheres, 2017, 122(6): 3228-3244. |
[16] | Swensons S, Wahr J.Estimating large-scale precipitation minus evapotranspiration from GRACE satellite gravity measurements[J]. Journal of Hydrometeorology, 2009, 7(2): 252-269. |
[17] | Rodell M, Mcwillianms E B, Famiglietti J S, et al. Estimating evapotranspiration using an observation based terrestrial water budget[J]. Hydrological Processes, 2011, 25(26): 4082-4092. |
[18] | Billah M M, Goodall J L, Narayan U, et al. A methodology for evaluating evapotranspiration estimates at the watershed-scale using GRACE[J]. Journal of Hydrology, 2015, 523: 574-586. |
[19] | Wan Z, Zhang K, Xue X, et al. Water balance-based actual evapotranspiration reconstruction from ground and satellite observations over the Conterminous United States[J]. Water Resources Research, 2015, 51(8): 6485-6499. |
[20] | Zhang D, Liu X, Liu C, et al. Responses of runoff to climatic variation and human activities in the Fenhe River, China[J]. Stochastic Environmental Research & Risk Assessment, 2013, 27(6): 1293-1301. |
[21] | 易浪, 任志远, 张翀, 等. 黄土高原植被覆盖变化与气候和人类活动的关系[J]. 资源科学, 2014, 36(1): 166-174. |
[Yi L, Ren Z Y, Zhang C, et al. Vegetation cover, climate and human activities on the Loess Plateau[J]. Resources Science, 2014, 36(1): 166-174. ] | |
[22] | 贺添, 邵全琴. 基于MOD16产品的我国2001-2010年蒸散发时空格局变化分析[J]. 地球信息科学学报, 2014, 16(6): 979-988. |
[He T, Shao Q Q.Spatial-temporal variation of terrestrial evapotranspiration in China from 2001 to 2010 using MOD16 products[J]. Journal of Geo-information Science, 2014, 16(6): 979-988. ] | |
[23] | Liu Q, Yang Z F.Quantitative estimation of the impact of climate change on actual evapotranspiration in the Yellow River Basin, China[J]. Journal of Hydrology, 2010, 395(3): 226-234. |
[24] | Gao X, Sun M, Zhao Q, et al. Actual ET modelling based on the Budyko framework and the sustainability of vegetation water use in the Loess Plateau[J]. Science of the Total Environment, 2017, 579: 1550-1559. |
[25] | Zhao J, Liang W, Yang Y, et al. Separating vegetation greening and climate change controls on evapotranspiration trend over the Loess Plateau[J]. Scientific Reports, 2017, DOI: 10. 1038/s41598-017-08477-x. |
[26] | Zhang Q, Xu C Y, Chen Y D, et al. Comparison of evapotranspiration variations between the Yellow River and Pearl River basin, China[J]. Stochastic Environmental Research & Risk Assessment, 2011, 25(2): 139-150. |
[27] | Peng B, Liu W, Guo M.Impacts of climate variability and human activities on decrease in streamflow in the Qinhe River, China[J]. Theoretical & Applied Climatology, 2014, 117(1-2): 293-301. |
[28] | Lu Z, Zou S, Qin Z, et al. Hydrologic responses to land use change in the Loess Plateau: case study in the upper Fenhe River watershed[J]. Advances in Meteorology, 2015, (3): 1-10. |
[29] | 宋晓猛, 张建云, 占车生, 等. 基于DEM的数字流域特征提取研究进展[J]. 地理科学进展, 2013, 32(1): 31-40. |
[Song X M, Zhang J Y, Zhan C S, et al. Advances in digital watershed features extracting based on DEM[J]. Progressing Geography, 2013, 32(1): 31-40. ] | |
[30] | Tapley B D, Bettadpur S, Ries J C, et al. GRACE measurements of mass variability in the earth system[J]. Science, 2004, 305(5683): 503-505. |
[31] | Wahr J, Swenson S, Zlotnicki V, et al. Time-variable gravity from GRACE: first results[J]. Geophysical Research Letters, 2014, 31(11): 293-317. |
[32] | Rodell M, Beaudoing H, NASA. GLDAS Noah Land Surface Model L4 monthly 0. 25×0. 25 degree V2. 0[EB/OL]. (2017-08-30)[2018-03-20]. |
[33] | Martens B, Miralles D G, Lievens H, et al. GLEAM v3: satellite-based land evaporation and root-zone soil moisture[J]. Geoscientific Model Development Discussions, 2017, 10(5): 1-36. |
[34] | 中华人民共和国水利部水文局. 中华人民共和国水文年鉴黄河流域水文资料[M]. 郑州: 河南简易科技有限公司&河南黄河水文勘测设计院数字排印中心, 2003-2015. |
[Bureau of Hydrology ,Ministry of Water Resources , People's Republic of China. Annual Hydrological Report, People's Republic of China: Hydrological Data of Yellow River Basin[M]. Zhengzhou: Henan Jianyi Technology Limited Company & Digital Typography Center of Henan Yellow River Hydrological Survey and Design Institute, 2003-2015. ] | |
[35] | 国家气象局. 中国气象科学数据共享服务网[EB/OL]. (2017-08-30)[2018-03-20]. . |
[National Meteorological Administration. China Meteorological Data Sharing Service System[EB/OL]. (2017-08-30)[2018-03-20]. ] | |
[36] | 刘志红, Tim R M, Van Niel T G, 等. 专用气候数据空间插值软件ANUSPLIN及其应用[J]. 气象, 2008, 34(2): 92-100. |
[Liu Z H, Tim R M, Van N, et al. Introduction of the professional interpolation software for meteorology data: ANUSPLIN[J]. Meteorological Monthly, 2008, 34(2): 92-100. ] | |
[37] | 左其亭, 王中根. 现代水文学[M]. 郑州: 黄河水利出版社, 2002. |
[Zuo Q T, Wang Z G.Modern Hydrology[M]. Zhengzhou: The Yellow River Water Conservancy Press, 2002. ] | |
[38] | Senay G B, Leaks S, Nagler P L, et al. Estimating basin scale evapotranspiration (ET) by water balance and remote sensing methods[J]. Hydrological Processes, 2011, 25(26): 4037-4049. |
[39] | Yang T, Zhang Q, Wang W, et al. Review of advances in hydrologic science in China in the last decades: Impact study of climate change and human activities[J]. Journal of Hydrologic Engineering, 2013, 18(11): 1380-1384. |
[40] | Li G, Zhang F, Jing Y, ,et al. Response of evapotranspiration to changes in land use. Response of evapotranspiration to changes in land use and land cover and climate in China during2001-2013[J]. Science of the Total Environment, 2017, 596-597: 256-265. |
[41] | Landerer F W, Swenson S C.Accuracy of scaled GRACE terrestrial water storage estimates[J]. Water Resources Research, 2012, DOI: 10. 1029/2011WR011453. |
[42] | Fischer D, Michel V.Sparse regularization of inverse gravimetry-case study: spatial and temporal mass variations in South America[J]. Inverse Problems, 2012, 28(6): 65012-65045. |
[43] | Syed T H, Famiglietti J S, Rodell M, et al. Analysis of terrestrial water storage changes from GRACE and GLDAS[J]. Water Resources Research, 2008, 44(2): 339-356. |
[44] | Scanlon B R, Longuevergne L, Long D.Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA[J]. Water Resources Research, 2012, 48(4): 142-148. |
[45] | Long D, Longuevergne L, Scanlon B R.Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites[J]. Water Resources Research, 2014, 50(2): 1131-1151. |
[46] | Xu S, Wu C, Wang L, et al. A new satellite-based monthly precipitation downscaling algorithm with non-stationary relationship between precipitation and land surface characteristics[J]. Remote Sensing of Environment, 2015, 162: 119-140. |
[1] | 翟志宏, 江民星, 常春英. 降水对蔬菜价格的冲击效应——以广州为例[J]. 资源科学, 2021, 43(2): 304-315. |
[2] | 刘启航, 黄昌. 西北内陆区水量平衡要素时空分析[J]. 资源科学, 2020, 42(6): 1175-1187. |
[3] | 郭梦瑶, 佘敦先, 张利平, 汤柔馨, 赵鹏雁. 渭河流域潜在蒸散量变化的气候归因[J]. 资源科学, 2020, 42(5): 907-919. |
[4] | 李慧娟, 师长兴, 马小晴, 刘慰. 黄河中游窟野河流域水沙变化影响因素定量评估[J]. 资源科学, 2020, 42(3): 499-507. |
[5] | 黄其威, 刘诗奇, 王平, 王田野, 于静洁, 陈晓龙, 杨林生. 1936—2018年环北极典型流域气温与降水时空变化[J]. 资源科学, 2020, 42(11): 2119-2131. |
[6] | 韩春坛, 王磊, 陈仁升, 刘章文, 刘俊峰, 阳勇, 吕汉秦. 祁连山高寒山区降水观测网络及其数据应用[J]. 资源科学, 2020, 42(10): 1987-1997. |
[7] | 何志明, 李月臣, 金贤锋, 刘贤, 何小波. 考虑太阳辐射修正的重庆山地气温空间化模拟[J]. 资源科学, 2019, 41(6): 1131-1140. |
[8] | 李晓菲, 徐长春, 李路, 罗映雪, 杨秋萍, 杨媛媛. CMIP5模式对西北干旱区典型流域气温模拟能力评估——以开都-孔雀河为例[J]. 资源科学, 2019, 41(6): 1141-1153. |
[9] | 刘成, 车达升, 李晓东. 黄渤海海冰分布特征及其影响因子[J]. 资源科学, 2019, 41(6): 1167-1175. |
[10] | 刘琳, 徐宗学, 杨晓静. 西南地区旱涝演变与ENSO事件的关系[J]. 资源科学, 2019, 41(11): 2144-2153. |
[11] | 王斌, 李鹏, 徐国策, 成玉婷, 赵宾华, 魏芳. 中国一级流域年气温的时空变化特征[J]. 资源科学, 2019, 41(1): 152-163. |
[12] | 朱大运, 熊康宁, 肖华. 贵州省极端气温时空变化特征分析[J]. 资源科学, 2018, 40(8): 1672-1683. |
[13] | 马利群, 秦奋, 孙九林, 王浩, 夏浩铭. 黄土高原昼夜不对称性增温及其对植被NDVI的影响[J]. 资源科学, 2018, 40(8): 1684-1692. |
[14] | 吴溪, 郭斌, 陈忠升, 史文娇. 基于Landsat影像的环胶州湾不透水面格局演变过程[J]. 资源科学, 2018, 40(11): 2260-2269. |
[15] | 郭湘宇, 吴正方, 杜海波, 王雷, 杨满根, 陈志彪. 福建省极端降水时空变化特征及其环流因素分析[J]. 资源科学, 2017, 39(6): 1084-1098. |
|