资源科学 ›› 2020, Vol. 42 ›› Issue (12): 2463-2474.doi: 10.18402/resci.2020.12.16
武蓉蓉1(), 谢苗苗1,2(
), 刘琦1, 李汉廷1, 郭强1, 李新宇3
收稿日期:
2019-10-16
修回日期:
2020-01-03
出版日期:
2020-12-25
发布日期:
2021-02-25
通讯作者:
谢苗苗
作者简介:
武蓉蓉,女,山西临汾人,硕士研究生,主要从事综合景观生态与土地利用研究。E-mail: 基金资助:
WU Rongrong1(), XIE Miaomiao1,2(
), LIU Qi1, LI Hanting1, GUO Qiang1, LI Xinyu3
Received:
2019-10-16
Revised:
2020-01-03
Online:
2020-12-25
Published:
2021-02-25
Contact:
XIE Miaomiao
摘要:
针对以往热岛影响因素研究中缺乏因子综合作用及作用程度空间异质性分析的现状,本文以大都市北京为研究区,利用兴趣点(POI)数据划分承载不同人类活动的用地功能区块,结合地理探测器探究在市域整体及不同用地功能区块中植被、水体、不透水面及社会经济要素等多维因素对地表温度的影响(单因子作用与因子交互作用)。结果表明:①各单因子、因子交互作用对于地表温度的影响程度在北京市14类用地功能区块中存在空间分异。单因子探测表明整体上植被对温度的影响力高达72.3%,其作用程度与社会经济因素作用程度的差距在人类活动较为频繁的区块显著缩小;②因子交互作用探测显示两因子交互作用对温度的影响远大于单因子作用效果,整体水平上植被与人口交互作用是控制温度分异的主导因子,解释力达到78.9%,而在包含商业服务或公共管理服务的区块植被与人口交互作用均为影响温度分异的主导因素,包含工业的区块则为不透水与经济水平、植被交互作用为主导,且50 %区块内因子交互作用存在非线性增强现象。③根据风险探测识别出不同功能区块高温风险区特征,商业服务区块、公共管理与商业服务混合(公-商)区块为城市高温风险较高的区域。基于用地功能区块的地理探测器模型对地表温度空间分异的解释优于市域水平的全局模型,可以较好地量化各因素在不同空间位置上对地表温度的影响,为制定分区域有针对性的城市热岛效应缓解策略提供参考。
武蓉蓉, 谢苗苗, 刘琦, 李汉廷, 郭强, 李新宇. 大都市功能区块视角下的热岛影响因素空间分异[J]. 资源科学, 2020, 42(12): 2463-2474.
WU Rongrong, XIE Miaomiao, LIU Qi, LI Hanting, GUO Qiang, LI Xinyu. Spatial variability of causative factors of heat islands from the perspective of metropolitan functional blocks[J]. Resources Science, 2020, 42(12): 2463-2474.
表3
不同功能区块高温风险区影响因素取值范围及等级组合特征"
区块 | 人口密度/(千人/km2) | GDP/(万元/km2) | ISA | NDVI | MNDWI |
---|---|---|---|---|---|
商服 | 18.541~32.797 | 50.558~77.997 | 0.250~0.586 | 0.106~0.236 | 0.000~0.082 |
商-交 | 10.835~18.540 | 19.777~50.557 | 0.250~0.586 | 0.106~0.236 | — |
居-商 | 2.101~6.595 | 0.011~2.603 | 0.080~0.149 | 0.106~0.236 | — |
公-商 | 18.541~32.797 | 50.558~77.997 | 0.250~0.586 | 0.000~0.105 | — |
工业 | 0.045~2.100 | 0.011~2.603 | 0.000~0.027 | 0.237~0.360 | — |
公-工 | 6.596~10.834 | 2.604~9.083 | 0.000~0.027 | 0.106~0.236 | — |
交-工 | 0.045~2.100 | 0.011~2.603 | 0.000~0.027 | 0.237~0.360 | — |
居住 | 2.101~6.595 | 2.604~9.083 | 0.080~0.149 | 0.237~0.360 | — |
居-交 | 2.101~6.595 | 0.011~2.603 | 0.000~0.027 | 0.106~0.236 | — |
公-居 | 6.596~10.834 | 2.604~9.083 | 0.028~0.079 | 0.106~0.236 | — |
公-交 | 10.835~18.540 | 2.604~9.083 | 0.150~0.249 | 0.106~0.236 | 0.000~0.082 |
公-管 | 18.541~32.797 | 50.558~77.997 | 0.250~0.586 | 0.106~0.236 | — |
交通 | 2.101~6.595 | 2.604~9.083 | 0.150~0.249 | 0.106~0.236 | — |
其他 | 6.596~10.834 | 2.604~9.083 | 0.250~0.586 | 0.237~0.360 | 0.391~0.535 |
[1] | 宋长青, 程昌秀, 史培军. 新时代地理复杂性的内涵[J]. 地理学报, 2018,73(7):1204-1213. |
[ Song C Q, Cheng C X, Shi P J. Geography complexity: New connotations of geography in the new era[J]. Acta Geographica Sinica, 2018,73(7):1204-1213.] | |
[2] |
Akbari H, Pomerantz M, Taha H, et al. Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas[J]. Solar Energy, 2001,70(3):295-310.
doi: 10.1016/S0038-092X(00)00089-X |
[3] |
Grimm N B, Faeth S H, Golubiewski N E, et al. Global change and the ecology of cities[J]. Science, 2008,319(5864):756-760.
pmid: 18258902 |
[4] |
Jenerette D, Harlan S L, Buyantuev A, et al. Micro-scale urban surface temperatures are related to land-cover features and residential heat related health impacts in Phoenix, AZ USA[J]. Landscape Ecology, 2016,31(4):745-760.
doi: 10.1007/s10980-015-0284-3 |
[5] | Zheng Z, Zhou W Q, Yan J L, et al. The higher, the cooler? Effects of building height on land surface temperatures in residential areas of Beijing[J]. Physics and Chemistry of the Earth, 2019,110:149-156. |
[6] |
Yao R, Wang L C, Huang X, et al. Interannual variations in surface urban heat island intensity and associated drivers in China[J]. Journal of Environmental Management, 2018,222(15):86-94.
doi: 10.1016/j.jenvman.2018.05.024 |
[7] |
Keeratikasikorn C, Bonafoni S. Urban heat island analysis over the land use zoning plan of Bangkok by means of Landsat 8 imagery[J]. Remote Sensing, 2018, DOI: 10.3390/rs10030440.
pmid: 30701108 |
[8] |
刘焱序, 彭建, 王仰麟. 城市热岛效应与景观格局的关联: 从城市规模、景观组分到空间构型[J]. 生态学报, 2017,37(23):7769-7780.
doi: 10.5846/stxb201610202142 |
[ Liu Y X, Peng J, Wang Y L. Relationship between urban heat island and landscape patterns: From city size and landscape composition to spatial configuration[J]. Acta Ecologica Sinica, 2017,37(23):7769-7780.] | |
[9] |
Luan X L, Yu Z W, Zhang Y T, et al. Remote sensing and social sensing data reveal scale-dependent and system-specific strengths of urban heat island determinants[J]. Remote Sensing, 2020, DOI: 10.3390/rs12030391.
doi: 10.3390/rs10121968 pmid: 30701108 |
[10] |
谢苗苗, 王仰麟, 付梅臣. 城市地表温度热岛影响因素研究进展[J]. 地理科学进展, 2011,30(1):35-41.
doi: 10.11820/dlkxjz.2011.01.004 |
[ Xie M M, Wang Y L, Fu M C. An overview and perspective about causative factors of surface urban heat island effects[J]. Progress in Geography, 2011,30(1):35-41.] | |
[11] |
Asgarian A, Amiri B J, Sakieh Y, et al. Assessing the effect of green cover spatial patterns on urban land surface temperature using landscape metrics approach[J]. Urban Ecosystems, 2015,18(1):209-222.
doi: 10.1007/s11252-014-0387-7 |
[12] | Jiang Y T, Fu P, Weng Q H, et al. Assessing the impacts of urbanization-associated land use/cover change on land surface temperature and surface moisture: A case study in the Midwestern United States[J]. Remote Sensing, 2015, (7):4880-4898. |
[13] |
Peng J, Jia J L, Liu Y X, et al. Seasonal contrast of the dominant factors for spatial distribution of land surface temperature in urban areas[J]. Remote Sensing of Environment, 2018,215(15):255-267.
doi: 10.1016/j.rse.2018.06.010 |
[14] |
Zhao C H, Jensen J, Weng Q H, et al. A geographically weighted regression analysis of the underlying factors related to the surface urban heat island phenomenon[J]. Remote Sensing, 2018, DOI: 10.3390/rs10091428.
pmid: 30701108 |
[15] |
Hu D, Meng Q Y, Zhang L L, et al. Spatial quantitative analysis of the potential driving factors of land surface temperature in different centers of polycentric cities: A case study in Tianjin, China[J]. Science of the Total Environment, 2020, DOI: 10.1016/j.scitotenv.2019.135244.
doi: 10.1080/00139157.1995.9930945 pmid: 12320385 |
[16] |
杨智威, 陈颖彪, 吴志峰, 等. 粤港澳大湾区城市热岛空间格局及影响因子多元建模[J]. 资源科学, 2019,41(6):1154-1166.
doi: 10.18402/resci.2019.06.14 |
[ Yang Z W, Chen Y B, Wu Z F, et al. Spatial pattern of urban heat island and multivariate modeling of impact factors in the Guangdong-Hong Kong-Macao Greater Bay area[J]. Resources Science, 2019,41(6):1154-1166.] | |
[17] | 王佳, 钱雨果, 韩立建, 等. 基于GWR模型的土地覆盖与地表温度的关系: 以京津唐城市群为例[J]. 应用生态学报, 2016,27(7):2128-2136. |
[ Wang J, Qian Y G, Han L J, et al. Relationship between land surface temperature and land cover types based on GWR model: A case of Beijing-Tianjin-Tangshan urban agglomeration, China[J]. Chinese Journal of Applied Ecology, 2016,27(7):2128-2136.] | |
[18] |
Shahraiyni H T, Sodoudi S, EI-Zafarany A, et al. A comprehensive statistical study on daytime surface urban heat island during summer in urban areas, case study: Cairo and its new towns[J]. Remote Sensing, 2016, DOI: 10.3390/rs8080643.
doi: 10.3390/rs10121968 pmid: 30701108 |
[19] |
Huang G L, Cadenasso M. People, landscape, and urban heat island: Dynamics among neighborhood social conditions, land cover and surface temperatures[J]. Landscape Ecology, 2016,31(10):2507-2515.
doi: 10.1007/s10980-016-0437-z |
[20] | Gercek D, Guven I T, Oktay I C, et al. Analysis of the Intra-City Variation of Urban Heat Island and Its Relation to Land Surface/Cover Parameters[C]. Prague: XXIII Isprs Congress, 2016. |
[21] |
杨智威, 陈颖彪, 吴志峰, 等. 粤港澳大湾区建设用地扩张与城市热岛扩张耦合态势研究[J]. 地球信息科学学报, 2018,20(11):1592-1603.
doi: 10.12082/dqxxkx.2018.180242 |
[ Yang Z W, Chen Y B, Wu Z F, et al. The coupling between construction land expansion and urban heat island expansion in Guangdong-Hong Kong-Macao Greater Bay[J]. Journal of Geo-Information Science, 2018,20(11):1592-1603.] | |
[22] |
Liu Y, Shintaro G, Zhuang D F, et al. Urban surface heat fluxes infrared remote sensing inversion and their relationship with land use types[J]. Journal of Geographical Sciences, 2012,22(4):699-715.
doi: 10.1007/s11442-012-0957-7 |
[23] |
孙然好, 王业宁, 陈婷婷. 人为热排放对城市热环境的影响研究展望[J]. 生态学报, 2017,37(12):3991-3997.
doi: 10.5846/stxb201611182342 |
[ Sun R H, Wang Y N, Chen T T. Impacts of anthropogenic heat emissions on urban thermal environment: A review[J]. Acta Ecologica Sinica, 2017,37(12):3991-3997.] | |
[24] |
陈蔚珊, 柳林, 梁育填. 基于POI数据的广州零售商业中心热点识别与业态集聚特征分析[J]. 地理研究, 2016,35(4):703-716.
doi: 10.11821/dlyj201604009 |
[ Chen W S, Liu L, Liang Y T. Retail center recognition and spatial aggregating feature analysis of retail formats in Guangzhou based on POI data[J]. Geographical Research, 2016,35(4):703-716.] | |
[25] |
Yang Z W, Chen Y B, Wu Z F, et al. Spatial heterogeneity of the thermal environment based on the urban expansion of natural cities using open data in Guangzhou, China[J]. Ecological Indicators, 2019,104:524-534.
doi: 10.1016/j.ecolind.2019.05.032 |
[26] |
王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017,72(1):116-134.
doi: 10.11821/dlxb201701010 |
[ Wang J F, Xu C D. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017,72(1):116-134.] | |
[27] | Wang J F, Li X H, Christakos G, et al. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun Region, China[J]. International Journal of Geographical Information Science, 2010,24(1):107-127. |
[28] |
Huang J X, Wang J F, Bo Y C, et al. Identification of health risks of hand, foot and mouth disease in China using the geographical detector technique[J]. International Journal of Environmental Research and Public Health, 2014,11(3):3407-3423.
doi: 10.3390/ijerph110303407 pmid: 24662999 |
[29] |
Luo W, Jasiewicz J, Stepinski T, et al. Spatial association between dissection density and environmental factors over the entire conterminous United States[J]. Geophysical Research Letters, 2015,43(2):692-700.
doi: 10.1002/grl.v43.2 |
[30] | Xu Q R, Zheng X Q, Zhang C X. Quantitative analysis of the determinants influencing urban expansion: A case study in Beijing, China[J]. Sustainability, 2018,10(5):1630-1639. |
[31] | Meng Q Y, Zhang L L, Sun Z H, et al. Characterizing spatial and temporal trends of surface urban heat island effect in an urban main built-up area: A 12-year case study in Beijing, China[J]. Remote Sensing of Environment, 2018,204:826-837. |
[32] | Fang C L, Cui X G, Li G D, et al. Modeling regional sustainable development scenarios using the urbanization and eco-environment coupler: Case study of Beijing-Tianjin-Hebei urban agglomeration, China[J]. Science of the Total Environment, 2019,689:820-830. |
[33] | 李兴荣, 胡非, 舒文军. 北京夏季强热岛分析及数值模拟研究[J]. 气象, 2007,33(6):25-31. |
[ Li X R, Hu F, Shu W J. Analysis and numerical simulation of summer strong urban heat island in Beijing[J]. Meteorological Monthly, 2007,33(6):25-31.] | |
[34] | Jiménez-Munoz J, Sobrino J, Skokovic D, et al. Land surface temperature retrieval methods from Landsat-8 Thermal Infrared Sensor Data[J]. IEEE Geoscience and Remote Sensing Letters, 2014,11(10):1840-1843. |
[35] | 黄荣峰, 徐涵秋. 利用Landsat ETM+影像研究土地利用/覆盖与城市热环境的关系: 以福州市为例[J]. 遥感信息, 2006, (5):36-39. |
[ Huang R F, Xu H Q. A study on the relationship between land cover/use and urban heat environment using Landsat ETM+ Satellite Imagery[J]. Remote Sensing Information, 2006, (5):36-39.] | |
[36] | Xu H Q. Modification of the normalized difference water index (NDWI) to enhance open water features in remotely sensed imagery[J]. International Journal of Remote Sensing, 2006,27(14):3025-3033. |
[37] | Xu J H, Zhao Y, Zhong K W, et al. Coupling modified linear spectral mixture analysis and soil conservation service curve number (SCS-CN) models to simulate surface runoff: Application to the main urban area of Guangzhou, China[J]. Water, 2016,8(12):550-567. |
[38] | 徐新良. 中国GDP空间分布公里网格数据集[DB/OL]. (2017-12) [2019-07-23]. http://www.resdc.cn/DOI/doi.aspx?DOIid=33. |
[ Xu X L. China GDP Spatial Distribution Kilometer Grid Dataset[DB/OL]. (2017-12) [2019-07-23]. http://www.resdc.cn/DOI/doi.aspx?DOIid=33.] | |
[39] | 徐新良. 中国人口空间分布公里网格数据集[DB/OL]. (2017-12) [2019-07-23]. http://www.resdc.cn/doi/doi.aspx?doiid=32. |
[ Xu X L. China Population Spatial Distribution Kilometer Grid Dataset[DB/OL]. (2017-12) [2019-07-23]. http://www.resdc.cn/doi/doi.aspx?DOIid=32.] | |
[40] | 中华人民共和国住房和城乡建设部. 城市用地分类与规划建设用地标准GB 50137-2011[M]. 北京: 中国建筑工业出版社, 2011. |
[ Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for Classification of Urban Land Use and Planning Standard of Development Land GB 50137-2011[M]. Beijing: China Architecture & Building Press, 2011.] | |
[41] | 池娇, 焦利民, 董婷, 等. 基于POI数据的城市功能区定量识别及其可视化[J]. 测绘地理信息, 2016,41(2):68-73. |
[ Chi J, Jiao L M, Dong T, et al. Quantitative identification and visualization of urban functional area based on POI data[J]. Journal of Geomatics, 2016,41(2):68-73.] | |
[42] | Wang J F, Hu Y. Environmental health risk detection with GeogDetector[J]. Environmental Modelling & Software, 2012,33:114-115. |
[43] |
Cao F, Ge Y, Wang J F. Optimal discretization for geographical detectors-based risk assessment[J]. GIScience and Remote Sensing, 2013,50(1):78-92.
doi: 10.1080/15481603.2013.778562 |
[44] |
史芸婷, 张彪, 高吉喜, 等. 基于城市热岛格局的绿地冷岛需求评估: 以北京市朝阳区为例[J]. 资源科学, 2019,41(8):1541-1550.
doi: 10.18402/resci.2019.08.13 |
[ Shi Y T, Zhang B, Gao J X, et al. Demand of urban green space cool islands based on heat island pattern: A case study of Chaoyang District of Beijing[J]. Resources Science, 2019,41(8):1541-1550.] | |
[45] | Li S C, Zhao Z Q, Xie M M, et al. Investigating spatial non-stationary and scale-dependent relationships between urban surface temperature and environmental factors using geographically weighted regression[J]. Environmental Modelling and Software, 2010,25(12):1789-1800. |
[46] | 陈世莉, 李郇, 赖安琪, 等. 广佛同城化发展的热岛效应研究[J]. 地理科学进展, 2017,36(6):720-731. |
[ Chen S L, Li X, Lai A Q, et al. Guangzhou-Foshan urban integration and its urban heat island effects[J]. Progress in Geography, 2017,36(6):720-731.] | |
[47] | 曹畅, 李旭辉, 张弥, 等. 中国城市热岛时空特征及其影响因子的分析[J]. 环境科学, 2017,38(10):3987-3997. |
[ Cao C, Li X H, Zhang M, et al. Correlation analysis of the urban heat island effect and its impact factors in China[J]. Environmental Science, 2017,38(10):3987-3997.] | |
[48] | Yu Z W, Yao Y W, Yang G Y, et al. Spatiotemporal patterns and characteristics of remotely sensed region heat islands during the rapid urbanization (1995-2015) of Southern China[J]. Science of the Total Environment, 2019,674:242-254. |
[49] | Peng J, Xie P, Liu Y X, et al. Urban thermal environment dynamics and associated landscape pattern factors: A case study in the Beijing metropolitan region[J]. Remote Sensing of Environment, 2016,173:145-155. |
[50] | Rosenzweig C, Solecki W, Hammer S A, et al. Climate Change and Cities: First Assessment Report of the Urban Climate Change Research Network[M]. Cambridge: Cambridge University Press, 2011. |
[1] | 纪晓萌, 秦伟山, 李世泰, 刘肖梅, 王秋贤. 中国地级单元旅游业发展效率格局及影响因素[J]. 资源科学, 2021, 43(1): 185-196. |
[2] | 黄晶, 薛东前, 代兰海. 农产品主产区村镇建设资源环境承载力空间分异及影响因素——以甘肃省临泽县为例[J]. 资源科学, 2020, 42(7): 1262-1274. |
[3] | 杨凯悦, 宋永永, 薛东前. 黄土高原乡村聚落用地时空演变与影响因素[J]. 资源科学, 2020, 42(7): 1311-1324. |
[4] | 郭贝贝, 方叶林, 周寅康. 农户尺度的耕地撂荒影响因素及空间分异[J]. 资源科学, 2020, 42(4): 696-709. |
[5] | 赵敏燕, 董锁成, 吴忠宏, 李宇, 马红, 邵丹, 高宁, 夏冰. 森林体验教育活动对城市公众环境负责任行为的影响[J]. 资源科学, 2020, 42(3): 583-592. |
[6] | 刘晨光. 黄河流域专业村空间格局演化及影响因素[J]. 资源科学, 2020, 42(12): 2300-2313. |
[7] | 张新, 刘家明, 朱鹤, 李涛. 北京郊区参与型体育旅游资源时空演化特征及影响因素[J]. 资源科学, 2020, 42(11): 2196-2209. |
[8] | 乔家君, 朱乾坤, 辛向阳. 黄河流域农区贫困特征及其影响因素[J]. 资源科学, 2020, 42(1): 184-196. |
[9] | 刘小鹏, 马存霞, 魏丽, 程静, 魏静宜, 曾端. 黄河上游地区减贫转向与高质量发展[J]. 资源科学, 2020, 42(1): 197-205. |
[10] | 关伟, 许淑婷, 郭岫垚. 黄河流域能源综合效率的时空演变与驱动因素[J]. 资源科学, 2020, 42(1): 150-158. |
[11] | 史芸婷,张彪,高吉喜,佟跃,邵珊珊. 基于城市热岛格局的绿地冷岛需求评估——以北京市朝阳区为例[J]. 资源科学, 2019, 41(8): 1541-1550. |
[12] | 张诩, 乔娟, 沈鑫琪. 养殖废弃物治理经济绩效及其影响因素——基于北京市养殖场(户)视角[J]. 资源科学, 2019, 41(7): 1250-1261. |
[13] | 魏慧, 吕昌河, 刘亚群, 杨凯杰. 青藏高原设施农业分布格局及变化[J]. 资源科学, 2019, 41(6): 1093-1101. |
[14] | 杨智威, 陈颖彪, 吴志峰, 郑子豪, 李娟娟. 粤港澳大湾区城市热岛空间格局及影响因子多元建模[J]. 资源科学, 2019, 41(6): 1154-1166. |
[15] | 吕宁, 吴新芳, 韩霄, 赵亚茹. 游客与居民休闲满意度指数测评与比较——以北京市为例[J]. 资源科学, 2019, 41(5): 967-979. |
|