Environmental impact assessment of resource recovery from end-of-life power batteries in the context of carbon neutrality
Received date: 2024-08-22
Revised date: 2025-04-21
Online published: 2025-06-17
[Objective] Improper disposal of end-of-life power batteries may lead to soil and water pollution. Scientific evaluation of the environmental impacts during the regeneration and utilization processes of these batteries and the identification of key environmental impact factors and stages are essential for improving the resource recovery efficiency and promoting the achievement of the “dual carbon” goal. [Methods] Under such circumstances, the life cycle assessment (LCA) method was employed to quantitatively analyze the environmental impacts of two recycling processes for end-of-life batteries: mechanical-physical recovery and wet recovery. This study innovatively specified five treatment stages, and three endpoint and eighteen midpoint environmental impact types were considered. [Results] (1) The environmental impact values of both recycling processes were negative, indicating that the recycling of end-of-life power batteries could effectively mitigate environmental impacts from a life cycle perspective. The mechanical-physical recovery exhibited better environmental performance compared to the wet recovery, with both processes demonstrating the greatest mitigation effects on marine ecotoxicity, accounting for 51.4% and 53.2%, respectively. (2) From the perspective of endpoint environmental impact, the recycling of end-of-life power batteries exhibited markedly higher mitigation effects on resource depletion (97.3%) than on human health (2.6%) and ecosystem (0.1%). (3) The battery crushing and sorting stage and the electrode sheet processing stage were identified as the primary contributors to the environmental impacts, each accounting for about 35.7% of the total impacts. [Conclusion] Sensitivity analysis shows that reducing material inputs and improving the recycling rate of recycled products have the most significant impacts on life cycle environmental effects, while variations in electricity input show relatively minor effects. It is recommended to further strengthen the cascading utilization of end-of-life power batteries and improve the output rate of recycled products to reduce their environmental impacts.
LIU Minwei , WEI Kexin , CHENG Beibei , LIU Xiaoyu , ZENG Jincan , WANG Peng . Environmental impact assessment of resource recovery from end-of-life power batteries in the context of carbon neutrality[J]. Resources Science, 2025 , 47(5) : 990 -1001 . DOI: 10.18402/resci.2025.05.07
表1 1 t报废磷酸铁锂电池回收利用数据清单Table 1 Data list for recycling 1 ton of end-of-life lithium iron phosphate batteries |
类别 | 物料及排放物 | 数量 |
---|---|---|
电池破碎分选阶段 | ||
原辅料投入 | 废旧三元动力电池/t | 0.286 |
废磷酸铁锂电池/t | 1.000 | |
废磷酸铁锂电芯/t | 0.571 | |
能源投入 | 电/kW·h | 256.714 |
产物产出 | 废磷酸铁锂正极片/t | 0.857 |
废磷酸铁锂负极片/t | 0.143 | |
磷酸铁锂黑粉/t | 0.545 | |
三元电池黑粉/t | 0.171 | |
铜料/t | 0.213 | |
铝料/t | 0.369 | |
铁料/t | 0.061 | |
废气排放 | 废气/g | 1.091 |
烟气/g | 4.479 | |
二氧化碳/t | 0.164 | |
正负极片处理阶段 | ||
原辅料 投入 | 废磷酸铁锂正极片/t | 0.857 |
废磷酸铁锂负极片/t | 0.143 | |
能源投入 | 电/kW·h | 1603.471 |
产物产出 | 铜料/t | 0.213 |
铝料/t | 0.369 | |
铁料/t | 0.061 | |
负极粉/t | 0.111 | |
磷酸铁锂正极材料/再生磷酸铁锂/t | 0.275 | |
废气排放 | 二氧化碳/t | 1.022 |
磷酸铁制备阶段 | ||
原辅料 投入 | 磷酸铁锂黑粉/t | 0.545 |
浓硫酸溶液/t | 1.288 | |
辅料铁粉/t | 1.636 | |
氟化钠/t | 2.418 | |
双氧水/t | 0.327 | |
能源投入 | 电/kW·h | 0.144 |
天然气/m2 | 290.057 | |
资源投入 | 水/m3 | 10.000 |
产物产出 | 磷酸铁/t | 0.882 |
废气排放 | 废气/g | 8.416 |
二氧化碳/t | 0.634 | |
颗粒物排放 | 粉尘/g | 0.701 |
废水排放 | 滤液/t | 4.429 |
固废排放 | 石墨渣/t | 0.269 |
碳酸锂制备阶段 | ||
原辅料 投入 | 碳酸钠(纯碱)/t | 0.291 |
硫酸锂溶液/t | 0.302 | |
能源投入 | 电/kW·h | 811.686 |
蒸汽/t(1.0MPa, 186℃) | 0.237 | |
资源投入 | 水/m3 | 5.300 |
碳酸锂制备阶段 | ||
产物产出 | 碳酸锂/t | 0.203 |
废气排放 | 二氧化碳/t | 0.389 |
粉尘/g | 0.716 | |
废水排放 | 滤液/t | 5.536 |
固废排放 | 滤渣/kg | 0.709 |
无水硫酸钠蒸发阶段 | ||
原辅料 投入 | 沉锂中和母液/t | 5.482 |
硫酸钠溶液/t | 0.829 | |
产物产出 | 无水硫酸钠/t | 1.120 |
废水排放 | 离心母液/t | 0.491 |
冷凝水/t | 4.700 |
表2 中端和终端环境影响指标对应关系Table 2 Corresponding relationship between midpoint and endpoint impact indicators |
终端环境影响指标 | 中端环境影响指标 | 缩写 |
---|---|---|
人类健康 | 全球变暖 | GW |
平流层臭氧损耗 | SOD | |
电离辐射 | IR | |
臭氧形成(人类健康) | OF-HH | |
细颗粒物 | FPMF | |
人类致癌毒性 | HCT | |
人类非致癌毒性 | HNCT | |
水资源消耗 | WC | |
生态系统 | 臭氧形成(陆地生态系统) | OF-TE |
陆地酸化 | TA | |
淡水富营养化 | FE | |
海洋富营养化 | ME | |
陆地生态毒性 | TET | |
淡水生态毒性 | FET | |
海洋生态毒性 | MET | |
土地利用 | LU | |
资源枯竭 | 矿产资源稀缺 | MRS |
化石资源稀缺 | FRS |
表3 废旧电池两种回收工艺的中端环境影响结果Table 3 Midpoint environmental impact results of two recycling processes for end-of-life batteries |
中端环境 影响指标 | 单位 | 机械物理 回收工艺 | 湿法回收工艺 |
---|---|---|---|
全球变暖 | kg CO2 eq | -2669.841 | -1120.985 |
平流层臭氧损耗 | kg CFC-11 eq | -0.003 | -0.003 |
电离辐射 | kBq Co-60 eq | -7.406 | -4.372 |
臭氧形成(人类健康) | kg NOx eq | -14.487 | -17.898 |
细颗粒物 | kg PM2.5 eq | -35.832 | -22.374 |
人类致癌毒性 | kg 1,4-DCB | -954.835 | -607.205 |
人类非致癌毒性 | kg 1,4-DCB | -90191.780 | -64813.064 |
水资源消耗 | m3 | -16.059 | -12.075 |
臭氧形成(陆地生态系统) | kg NOx eq | -15.696 | -18.753 |
陆地酸化 | kg SO2 eq | -94.581 | -58.746 |
淡水富营养化 | kg P eq | -15.108 | -10.732 |
海洋富营养化 | kg N eq | -0.742 | -0.517 |
陆地生态毒性 | kg 1,4-DCB | -277376.616 | -173991.876 |
淡水生态毒性 | kg 1,4-DCB | -2518.029 | -1742.205 |
海洋生态毒性 | kg 1,4-DCB | -3595.214 | -2490.880 |
土地利用 | m2a crop eq | -228.245 | -143.607 |
矿产资源稀缺 | kg Cu eq | -288.086 | -1174.299 |
化石资源稀缺 | kg oil eq | -1273.181 | -743.219 |
表4 废旧电池两种回收工艺的终端环境影响结果Table 4 Endpoint environmental impact results of two recycling processes for end-of-life batteries |
环境影响类别 | 机械物理回收工艺 | 湿法回收工艺 |
---|---|---|
人类健康(DALY) | -0.049 | -0.032 |
生态系统(species.yr) | -4.712×10-5 | -3.017×10-5 |
资源枯竭(USD2013) | -352.037 | -435.548 |
[1] |
董雪松. 中国新能源汽车行业关键金属需求预测与可持续供应保障研究[D]. 长沙: 中南大学, 2023.
[
|
[2] |
|
[3] |
International Energy Agency. Global EV Outlook 2024[R]. Paris: International Energy Agency, 2024.
|
[4] |
中国汽车工业协会. 2023年汽车工业产销情况[N/OL]. (2024-01-11) [2024-08-20]. http://finance.people.com.cn/n1/2024/0111/c1004-40157045.html.
[China Association of Automobile Manufacturers. Automobile Industry Production and Sales in 2023[N/OL]. (2024-01-11) [2024-08-20]. http://finance.people.com.cn/n1/2024/0111/c1004-40157045.html.]
|
[5] |
|
[6] |
|
[7] |
孙孟琦. “双碳”背景下山东省新能源汽车动力电池回收潜力及环境影响评价研究[D]. 济南: 齐鲁工业大学, 2023.
[
|
[8] |
中华人民共和国工业和信息化部. 《新能源汽车废旧动力电池综合利用行业规范条件(2024年本)》公开征求意见[EB/OL]. (2024-08-14) [2024-08-20]. https://www.miit.gov.cn/xwfb/gxdt/index.html.
[Ministry of Industry and Information Technology of the People’s Republic of China. Specification Conditions for the Industry of Comprehensive Utilization of Used Power Batteries for New Energy Vehicles (2024 Edition) Open for Comments[EB/OL]. (2024-08-14) [2024-08-20]. https://www.miit.gov.cn/xwfb/gxdt/index.html.]
|
[9] |
中华人民共和国工业和信息化部. 四部门关于印发国家锂电池产业标准体系建设指南(2024版)的通知[EB/OL]. (2024-11-15) [2024-12-21]. https://www.miit.gov.cn/zwgk/zcwj/wjfb/tz/art/2024/art_58ab93934dbf46aa8fd393548e34bd16.html.
[Ministry of Industry and Information Technology of the People’s Republic of China. Notice of the Four Departments on the Issuance of National Lithium Battery Industry Standard System Construction Guide (2024 version)[EB/OL]. (2024-11-15) [2024-12-21]. https://www.miit.gov.cn/zwgk/zcwj/wjfb/tz/art/2024/art_58ab93934dbf46aa8fd393548e34bd16.html.]
|
[10] |
唐国明, 王铁铮, 田欣欣, 等. 新能源汽车动力电池的环境污染防治与资源回收利用探讨[J]. 环境保护与循环经济, 2023, 43(11): 1-6.
[
|
[11] |
|
[12] |
|
[13] |
|
[14] |
王琢璞. 新能源汽车动力电池回收利用潜力及生命周期评价[D]. 北京: 清华大学, 2018.
[
|
[15] |
刘永涛, 刘永杰, 袁诗泉, 等. 新能源汽车动力电池回收利用过程减碳成效测算[J]. 汽车工程学报, 2024, 14(1): 24-32.
[
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
广东庆达咨询有限公司. 广州报废动力电池材料再生利用项目节能报告[R]. 广州: 广东庆达咨询有限公司, 2024.
[Guangdong Qingda Consulting Co., Ltd. Energy Conservation Report of Guangzhou End-of-Life Power Battery Material Recycling Project[R]. Guangzhou: Guangdong Qingda Consulting Co., Ltd, 2024.]
|
[22] |
GB 16297-1996. 大气污染物综合排放标准[S]. 北京: 中华人民共和国环境保护局, 1996.
[GB 16297-1996. Comprehensive Emission Standards for Air Pollutants[S]. Beijing: Environmental Protection Bureau of the People’s Republic of China, 1996.]
|
[23] |
GB 31573-2015. 无机化学工业污染物排放标准[S]. 北京: 中华人民共和国环境保护部, 2015.
[GB 31573-2015. Pollutant Emission Standards for Inorganic Chemical Industry[S]. Beijing: Ministry of Environmental Protection of the People’s Republic of China, 2015.]
|
[24] |
GB 18484-2020. 危险废物焚烧污染控制标准[S]. 北京: 中华人民共和国生态环境部, 2020.
[GB 18484-2020. Hazardous Waste Incineration Pollution Control Standard[S]. Beijing: Ministry of Ecology and Environment of the People’s Republic of China, 2020.]
|
[25] |
曾广圆, 杨建新, 宋小龙, 等. 火法炼铜能耗与碳排放情景分析: 基于生命周期的视角[J]. 中国人口·资源与环境, 2012. 22(4): 46-50.
[
|
[26] |
杨凯, 赵俊学, 薛佳奇, 等. 基于生产的高纯生铁冶炼工艺数据库及其应用[J]. 铸造, 2019, 68(11): 1237-1242.
[
|
[27] |
张言璐. 我国电解铝与再生铝生产的生命周期评价[D]. 济南: 山东大学, 2016.
[
|
[28] |
|
[29] |
|
[30] |
熊晓立, 杨政险, 罗盛洋, 等. ECC路面面层的生命周期评价和成本分析[J]. 硅酸盐通报, 2023, 42(11): 3927-3936.
[
|
[31] |
|
/
〈 |
|
〉 |