Different perceptions of Beijing's destination images from tourists: An analysis of Flickr photos based on deep learning method
Received date: 2018-10-08
Request revised date: 2019-02-16
Online published: 2019-03-20
Copyright
With the rapid development of the Internet, increasingly more tourists use social media to share travel experiences. User generated content (UGC) has become an important source of information for potential tourists, affecting their perception of tourism destination image (TDI) and tourism decision making. Photos, as one of the carrieres of UGC, is an important tool for the spread of TDI across cultures. However, most of the previous photo-based TDI research mainly adopt content or semantic analysis by human, and the number of samples analyzed was limited. When facing large-scale UGC photo collections, more automated analysis methods are needed to improve efficiency. This article introduces the deep learning theory of computer science into TDI for the first time, taking the pictures released by tourists (from Hong Kong, Macao, and Taiwan of China; the United States; the United Kingdom) as the research samples and using machine analysis from millions of destination related photos to represent content and construct the correspondence between destination cognitive and affective images. With regard to the cognitive image, inbound tourists are more concerned about nature and architecture, but they pay different attention to culture, art, people, food and other aspects. Tourists from Hong Kong, Macao, and Taiwan of China are mostly interested in cultural relics, entertainment activities, and food. UK tourists pay attention to facilities and urban environment. US tourists are more likely to photograph people. With regard to the affective image, “exciting” and “pleasant” are the most significant affective elements for inbound tourists. Hong Kong, Macao, Taiwan of China, and US tourists show some sign of sleepiness, and UK tourists show more sign of distress. According to these results, targeted marketing for the main inbound tourist source markets is needed. For tourists from Hong Kong, Macao, and Taiwan of China, it’s essential to increase the cultural content of Beijing, diversify food and Beijing-style entertainment activities. For UK tourists, well-equipped facilities, diverse urban environments, and distinctive buildings are key marketing contents. Natural scenery and life of people are important symbols for attracting US tourists. In summary, this study used computer deep learning methods to analyze large-scale photo data sets, converting pictorial images into text to extract cognitive and affective images. It has both methodological and managerial implications.
DENG Ning , LIU Yaofang , NIU Yu , JI Weixing . Different perceptions of Beijing's destination images from tourists: An analysis of Flickr photos based on deep learning method[J]. Resources Science, 2019 , 41(3) : 416 -429 . DOI: 10.18402/resci.2019.03.01
Figure 1 Illustration of photo recognition using convolutional neural networks (CNN)图1 卷积神经网络图片识别原理示意图 |
Figure 2 Image content analysis based on DeepSentiBank图2 基于DeepSentiBank的图片内容分析 |
Figure 3 Illustration of the destination image perception research method based on user generated content (UGC) photos图3 基于海量UGC图片的目的地形象感知研究方法示意图 |
Table 1 High-frequency nouns of the Beijing related photos (top 30)表1 北京相关图片信息中名词高频词统计表(前30项) |
中国港澳台 | 英国 | 美国 | |||||
---|---|---|---|---|---|---|---|
名词 | 词频 | 名词 | 词频 | 名词 | 词频 | ||
建筑 | 208 | 建筑艺术 | 203 | 建筑艺术 | 622 | ||
建筑艺术 | 201 | 城市 | 175 | 建筑 | 609 | ||
城市 | 177 | 建筑 | 171 | 城市 | 605 | ||
食物 | 150 | 街道 | 129 | 食物 | 459 | ||
街道 | 137 | 鸟瞰风景 | 80 | 街道 | 447 | ||
房屋 | 88 | 房屋 | 79 | 房屋 | 312 | ||
脸 | 67 | 食物 | 76 | 鸟瞰风景 | 290 | ||
狗 | 67 | 石桥 | 53 | 脸 | 271 | ||
鸟瞰风景 | 62 | 脸 | 50 | 狗 | 198 | ||
雕塑 | 56 | 教堂 | 48 | 人们 | 186 | ||
人们 | 54 | 湖 | 47 | 雕塑 | 185 | ||
石桥 | 49 | 公园 | 46 | 石桥 | 181 | ||
猫 | 49 | 雕塑 | 44 | 女孩 | 174 | ||
教堂 | 46 | 人们 | 42 | 教堂 | 159 | ||
冬天 | 45 | 餐厅 | 41 | 公园 | 155 | ||
湖 | 44 | 堡垒 | 40 | 猫 | 154 | ||
公园 | 43 | 纪念碑 | 40 | 纪念碑 | 153 | ||
女孩 | 42 | 狗 | 40 | 景象 | 148 | ||
河流 | 42 | 景象 | 40 | 花园 | 145 | ||
宫殿 | 41 | 河流 | 38 | 河流 | 145 | ||
雕刻品 | 41 | 宫殿 | 37 | 宫殿 | 142 | ||
酒店 | 41 | 酒店 | 37 | 雕刻品 | 136 | ||
景象 | 40 | 道路 | 35 | 堡垒 | 135 | ||
纪念碑 | 40 | 雕刻品 | 34 | 酒店 | 132 | ||
夜晚 | 38 | 花园 | 34 | 道路 | 130 | ||
餐厅 | 36 | 冬天 | 33 | 冬天 | 130 | ||
花园 | 35 | 女孩 | 33 | 湖 | 127 | ||
汽车 | 35 | 超市 | 27 | 汽车 | 117 | ||
道路 | 32 | 早晨 | 27 | 小孩 | 107 | ||
超市 | 32 | 夜晚 | 26 | 眼睛 | 106 |
Table 2 Ratio table of Beijing cognitive image表2 北京认知形象比重表 |
序号 | 种类 | 中国港澳台/% | 英国/% | 美国/% |
---|---|---|---|---|
1 | 自然风光 | 21.5 | 21.1 | 22.5 |
2 | 人物 | 16.3 | 14.4 | 17.9 |
3 | 设施 | 8 | 8.3 | 7.5 |
4 | 娱乐休闲活动 | 2 | 1.8 | 1.6 |
5 | 文化艺术 | 6.9 | 6.6 | 6.9 |
6 | 食物 | 6.8 | 3.3 | 5.6 |
7 | 城市生活 | 11 | 13 | 11.1 |
8 | 建筑 | 23.6 | 26.9 | 22.8 |
9 | 其他 | 3.9 | 4.6 | 4.1 |
Table 3 High-frequency adjectives of the Beijing related photos (top 30)表3 北京相关图片信息中形容词高频词统计表(前30项) |
中国港澳台 | 英国 | 美国 | |||||
---|---|---|---|---|---|---|---|
形容词 | 词频 | 形容词 | 词频 | 形容词 | 词频 | ||
古老的 ancient | 289 | 古老的 ancient | 265 | 古老的 ancient | 927 | ||
著名的 famous | 174 | 著名的 famous | 176 | 著名的 famous | 581 | ||
传统的 traditional | 149 | 传统的 traditional | 122 | 传统的 traditional | 465 | ||
伟大的 great | 105 | 伟大的 great | 98 | 伟大的 great | 334 | ||
令人惊异的 amazing | 85 | 令人惊异的amazing | 67 | 令人惊异的 amazing | 264 | ||
空的 empty | 85 | 忙碌的 busy | 61 | 空的 empty | 254 | ||
金碧辉煌的 golden | 71 | 空的 empty | 60 | 忙碌的 busy | 218 | ||
忙碌的 busy | 65 | 令人震惊的 stunning | 54 | 好的 nice | 213 | ||
神圣的 holy | 65 | 好的 nice | 53 | 自然的 natural | 207 | ||
可怕的 weird | 64 | 神圣的 holy | 52 | 室外的 outdoor | 203 | ||
室外的 outdoor | 60 | 室外的 outdoor | 49 | 神圣的 holy | 201 | ||
好的 nice | 60 | 可爱的 lovely | 46 | 极好的 awesome | 198 | ||
热的 hot | 58 | 极好的 awesome | 44 | 金碧辉煌的 golden | 191 | ||
极好的 awesome | 58 | 可怕的 weird | 44 | 令人震惊的 stunning | 188 | ||
遗弃的 abandoned | 56 | 安静的 quiet | 43 | 遗弃的 abandoned | 184 | ||
极小的 little | 51 | 华丽宏伟的 magnificent | 43 | 可怕的 weird | 181 | ||
冷的 cold | 50 | 自然的 natural | 42 | 可爱的 lovely | 179 | ||
不好的 bad | 50 | 遗弃的 abandoned | 41 | 极小的 little | 170 | ||
自然的 natural | 50 | 金碧辉煌的 golden | 40 | 不好的 bad | 169 | ||
可爱的 lovely | 50 | 优秀的 excellent | 37 | 美丽的 beautiful | 163 | ||
令人震惊的 stunning | 48 | 疯狂的 crazy | 37 | 安静的 quiet | 162 | ||
疯狂的 crazy | 47 | 清晰的 clear | 36 | 疯狂的 crazy | 156 | ||
优秀的 excellent | 47 | 信基督的 Christian | 36 | 坏的 broken | 153 | ||
坏的 broken | 45 | 不可置信的 incredible | 36 | 年轻的 young | 149 | ||
信基督的 Christian | 44 | 不好的 bad | 36 | 优秀的 excellent | 148 | ||
安静的 quiet | 43 | 孤单的 lonely | 35 | 脏的 dirty | 146 | ||
明亮的 bright | 42 | 迷人的 fascinating | 35 | 信基督的 Christian | 143 | ||
美丽的 beautiful | 41 | 平和的 peaceful | 34 | 热闹的 hot | 143 | ||
孤单的 lonely | 41 | 多雨的 rainy | 34 | 孤单的 lonely | 143 | ||
清晰的 clear | 40 | 美丽的 beautiful | 34 | 华丽宏伟的 magnificent | 142 |
Table 4 Ratio table of Beijing cognitive image表4 北京情感形象比重表 |
种类 | 中国港澳台/% | 英国/% | 美国/% | |
---|---|---|---|---|
1 | 令人振奋的 arousing | 7.1 | 7.7 | 6.1 |
2 | 困倦欲睡的 sleepy | 1.3 | 0 | 1.2 |
3 | 兴奋的 exciting | 16.4 | 19.5 | 16.4 |
4 | 沮丧抑郁的 gloomy | 2.8 | 4.3 | 4.2 |
5 | 令人愉快 pleasant | 41 | 37.6 | 40.1 |
6 | 不愉快 unpleasant | 12.2 | 10.7 | 12 |
7 | 放松闲适的 relaxing | 5.7 | 6.4 | 6.6 |
8 | 不安苦恼的 distressing | 0 | 1.1 | 0 |
9 | 其他 others | 13.5 | 12.7 | 13.4 |
Figure 4 Photos of Beijing culture and art photographed by tourists (from a to c, Hong Kong, Macao, and Taiwan of China; UK; USA)图4 旅游者拍摄北京文化艺术图片(中国港澳台a,英国b,美国c) |
Figure 5 Photos of Beijing people photographed by tourists (from a to c, Hong Kong, Macao, and Taiwan of China; UK; USA)图5 旅游者拍摄北京人物图片(中国港澳台a,英国b,美国c) |
Figure 6 Photos of Beijing food photographed by tourists (from a to c, Hong Kong, Macao, and Taiwan of China; UK; USA)图6 旅游者拍摄北京食物图片(中国港澳台a,英国b,美国c) |
The authors have declared that no competing interests exist.
[1] |
[
|
[2] |
|
[3] |
[
|
[4] |
[
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
[
|
[13] |
[
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
[
|
[22] |
[
|
[23] |
[
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
[
|
[30] |
[
|
[31] |
|
[32] |
[
|
[33] |
|
[34] |
|
[35] |
[
|
[36] |
|
[37] |
[
|
[38] |
|
[39] |
[
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
[
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
[
|
[53] |
[
|
[54] |
|
[55] |
[
|
[56] |
[
|
[57] |
|
[58] |
|
[59] |
[
|
[60] |
|
/
〈 |
|
〉 |