The influence of population structural change on water consumption in urbanization
Received date: 2017-08-10
Request revised date: 2018-01-10
Online published: 2018-05-02
Copyright
We used the dynamical system GMM and panel threshold model to analyze the relationship between population structure change and water consumption in 31 provinces of China from 2000 to 2016. We found that the elasticity coefficient of aging population to water consumption is the largest (0.042). Among non-population structure factors, the elasticity coefficient of the water consumption of previous period to this period is the largest (0.978), followed by the water consumption by million CNY of GDP (0.020) and population scale (0.018). Industrial restructuring significantly inhibits water increases (-0.041); other regression results were not significant. Water use in the east is more affected by changes in population structure than other factors. With one percentage point increase in high-end consumption, population urbanization and rural labor force, water consumption respectively increased by 12.1, 6.5 and 3.6 percentage points respectively. Population structure changes in central and western regions did not significantly affect water consumption. The age and industrial structures have a threshold effect on water consumption, and the elastic coefficients are 0.174, 0.150, 0.139 and -0.012, -0.008 and -0.020, respectively. In 2016, only Tibet did not cross the first threshold of the population age structure, while other provinces crossed the second threshold. Beijing and Shanghai have crossed the second threshold of industrial structure in 2016, with 11 provinces in the second phase of the threshold, while the other 18 provinces have not crossed the first threshold. It is necessary to reduce the promoting effect of population structural change on water consumption, appropriately extend the retirement age and rationally control urban floating population. Other measures such as guiding residents to form water-saving ideas and achieving coordinated regional development are also needed.
JIN Wei , ZHANG Hengquan , ZHANG Hongbo , KONG Wei , MAO Guangxiong , ZHANG Chenjun , YAN Xiang . The influence of population structural change on water consumption in urbanization[J]. Resources Science, 2018 , 40(4) : 784 -796 . DOI: 10.18402/resci.2018.04.12
Table 1 Explanatory variable indicator description and data source表1 解释变量指标说明及数据来源 |
变量名 | 变量代码 | 指标说明 | 数据来源 | |
---|---|---|---|---|
人口结构变量 | 人口城乡结构 | lnUP | 采用各省年末城镇常住人口比重表示 | 2001—2017年《中国人口和就业统计年鉴》[36]、《中 国农村统计年 鉴》[37]、《中国统计年鉴》[38]及各省份统计年鉴 |
人口年龄结构 | lnAP | 采用各省65岁以上老龄人口比重表示 | ||
人口就业结构 | lnRP | 采用第一产业人口比重,即农林牧渔从业人口表示 | ||
人口教育结构 | lnEYP | 采用城乡居民受教育程度[35],* 表示 | ||
人口消费结构 | lnEGE | 采用各省城乡恩格尔系数表示 | ||
非人口结构变量 | 人口规模 | lnP | 借鉴李超等[33]对人口自然结构的定义,同时考虑到人口规模变化是驱动水资源消耗增加的直接因素,将人口规模作为解释变量进行回归,采用各省年末人口数表示 | |
气候环境 | lnPW | 气候环境能够直接决定地区水资源是否丰沛,故采用地区水资源禀赋表示气候环境 | ||
社会经济发展 | lnPGDP | 人均GDP表示地区社会经济发展程度表示 | ||
产业结构 | lnIS | 采用第三产业产值占比表示产业结构变动表示 | ||
技术进步 | lnWGDP | 技术进步对用水量的影响直接体现在经济增长过程中水资源产生的价值,用万元GDP用水量衡量技术进步程度表示 |
注:*借鉴文献[35]提出的劳动力平均受教育年限进行近似计算各省人口受教育程度,具体算法是将小学、初中、高中和大专及以上的受教育年限分别设定为6年、9年、12年和16年,所以各省居民受教育程度计算公式为:lnEYP=6×小学人口比重+9×初中人口比重+12×g高中人口比重+16×大专及以上人口比重。自2001年起,大专及以上数据细分为大专、本科、研究生,本文统一放入大专及以上人口比重中,教育年限仍取16年。 |
Table 2 GMM estimation results and robustness test of the national dynamic panel system表2 全国动态面板系统GMM估计结果及稳健性检验 |
自变量 | OLS | 固定效应FE | 系统GMM | |||||
---|---|---|---|---|---|---|---|---|
Coef. | T Statistics | Coef. | T Statistics | Coef. | T Statistics | |||
lnWi,t-1 | 0.539*** | 18.030 | 0.549*** | 25.600 | 0.978*** | 92.890 | ||
lnP | 0.458*** | 15.040 | 0.450*** | 20.980 | 0.018* | 1.680 | ||
lnUP | 0.056*** | 3.790 | 0.058*** | 3.560 | 0.027 | 1.390 | ||
lnAP | 0.111*** | 10.770 | 0.122*** | 10.560 | 0.042*** | 2.690 | ||
lnRP | 0.035*** | 4.480 | 0.038*** | 5.350 | -0.007 | -0.900 | ||
lnEYP | -0.163*** | -5.560 | -0.171*** | -6.660 | -0.053 | -1.540 | ||
lnEGE | -0.038*** | -3.220 | -0.072*** | -4.450 | -0.020 | -0.770 | ||
lnPW | 0.004** | 2.030 | 0.005*** | 2.750 | 0.001 | 0.750 | ||
lnPGDP | 0.423*** | 14.750 | 0.409*** | 19.110 | 0.001 | 0.140 | ||
lnIS | -0.069*** | -4.450 | -0.043*** | -2.910 | -0.041** | -2.150 | ||
lnWGDP | 0.458*** | 15.380 | 0.450*** | 20.980 | 0.020* | 1.910 | ||
_cons | -7.989*** | -14.100 | -7.802*** | -19.960 | — | |||
A-R2 | 0.998 | 0.998 | — | |||||
AR(1) | — | — | 0.000 | |||||
AR(2) | — | — | 0.278 | |||||
Sargan test | — | — | 0.911 |
注:***、**、*分别表示在1%、5%、10%的水平下显著。 |
Table 3 Robustness test results of GMM model system表3 系统GMM模型稳健性检验结果 |
自变量 | lnWi,t-1 | lnP | lnUP | lnAP | lnRP | lnEYP | lnEGE | lnPW | lnPGDP | lnIS | lnWGDP |
---|---|---|---|---|---|---|---|---|---|---|---|
Coef. | 0.987*** | 0.010 | 0.030 | 0.043** | -0.004 | -0.045 | -0.025 | 0.001 | 0.014 | -0.029 | 0.012* |
T Statistics | 132.820 | 1.410 | 1.560 | 2.890 | -0.490 | -1.400 | -1.560 | 0.620 | 1.080 | -1.420 | 1.790 |
AR(1) | 0.000 | ||||||||||
AR(2) | 0.261 | ||||||||||
Sargan test | 0.981 |
注:***、**、*分别表示在1%、5%、10%的水平下显著。 |
Table 4 GMM estimation results of dynamic panel systems in each region表4 各区域动态面板系统GMM估计结果 |
自变量 | 东部地区 | 中部地区 | 西部地区 | |||||
---|---|---|---|---|---|---|---|---|
Coef. | T Statistics | Coef. | T Statistics | Coef. | T Statistics | |||
lnWi,t-1 | 0.998*** | 51.260 | 0.957*** | 19.990 | 0.982*** | 41.370 | ||
lnP | -0.014 | -0.860 | -0.015 | -0.280 | 0.025 | 0.890 | ||
lnUP | 0.065** | 1.970 | -0.090 | -1.330 | 0.061 | 1.010 | ||
lnAP | -0.016 | -0.620 | 0.076 | 0.720 | 0.039 | 0.800 | ||
lnRP | 0.036** | 2.510 | -0.035 | -0.630 | 0.026 | 0.590 | ||
lnEYP | -0.133 | -1.340 | -0.050 | -0.220 | -0.107 | -0.980 | ||
lnEGE | -0.121* | -1.720 | -0.000 | -0.000 | -0.117 | -1.450 | ||
lnPW | -0.009* | -1.660 | -0.027* | -1.700 | 0.009** | 2.060 | ||
lnPGDP | 0.042** | 1.970 | 0.078* | 1.560 | -0.004 | -0.180 | ||
lnIS | -0.010 | -0.230 | -0.064 | -0.980 | -0.014** | -0.270 | ||
lnWGDP | 0.034 | 1.330 | 0.080 | 1.450 | 0.028 | 1.010 | ||
AR(1) | 0.000 | 0.000 | 0.000 | |||||
AR(2) | 0.488 | 0.147 | 0.864 | |||||
Sargan test | 0.969 | 0.357 | 0.619 |
注:***、**、*分别表示在1%、5%、10%的水平下显著。 |
Table 5 Existence check of age structure and industrial structure threshold表5 人口年龄结构、产业结构门槛存在性检验 |
门槛依赖变量及门槛顺序 | lnAP | lnIS | |||||
---|---|---|---|---|---|---|---|
单一 | 双重 | 三重 | 单一 | 双重 | 三重 | ||
F值 | 18.621*** | 7.250*** | 6.168* | 8.194** | 9.302** | 4.534 | |
P值 | 0.003 | 0.007 | 0.083 | 0.050 | 0.043 | 0.333 | |
1%临界值 | 13.936 | 5.975 | 12.671 | 11.584 | 13.405 | 16.935 | |
5%临界值 | 7.927 | 3.957 | 7.531 | 8.460 | 9.794 | 12.977 | |
10%临界值 | 5.615 | 2.593 | 5.343 | 6.180 | 7.779 | 10.570 |
注:***、**、*分别表示在1%、5%、10%的水平下显著。 |
Table 6 Age structure, industry structure threshold and 95% confidence interval表6 人口年龄结构、产业结构门槛值及95%置信区间 |
门槛依赖变量 | lnAP | lnIS | |||
---|---|---|---|---|---|
γ1 | γ2 | γ1 | γ2 | ||
门槛值 | 1.696 | 1.859 | 3.869 | 4.130 | |
95%置信区间 | [1.642,1.740] | [1.771,2.558] | [3.431,4.060] | [4.018,4.236] |
Table 7 Regression results of age structure and threshold panel model of industrial structure表7 人口年龄结构、产业结构门槛面板模型回归结果 |
门槛依赖变量 | lnAP | 门槛依赖变量 | LnIS | ||
---|---|---|---|---|---|
Coef. | T Statistics | Coef. | T Statistics | ||
lnWi,t-1 | 0.543*** | 25.780 | lnWi,t-1 | 0.619*** | 28.240 |
lnP | 0.460*** | 21.620 | lnP | 0.391*** | 17.390 |
lnUP | 0.056*** | 3.440 | lnUP | 0.077*** | 4.140 |
lnRP | 0.052*** | 8.200 | lnRP | 0.026*** | 3.290 |
lnEYP | -0.141*** | -5.430 | lnEYP | -0.129*** | -4.500 |
lnEGE | -0.080*** | -5.060 | lnEGE | -0.051*** | -2.900 |
lnPW | 0.005*** | 3.010 | lnPW | 0.004** | 2.270 |
lnPGDP | 0.415*** | 19.670 | lnPGDP | 0.332*** | 15.350 |
lnWGDP | 0.453*** | 21.490 | lnWGDP | 0.370*** | 17.180 |
lnAP1 | 0.174*** | 10.950 | lnIS1 | -0.012* | -0.560 |
lnAP2 | 0.150*** | 10.900 | LnIS2 | -0.008* | -0.410 |
lnAP3 | 0.139*** | 11.480 | LnIS3 | -0.020* | -1.080 |
_cons | -8.206*** | -20.930 | _cons | -6.509*** | -16.280 |
注:***、**、*分别表示在1%、5%、10%的水平下显著。 |
The authors have declared that no competing interests exist.
[1] |
|
[2] |
|
[3] |
|
[4] |
[
|
[5] |
|
[6] |
|
[7] |
|
[8] |
[
|
[9] |
|
[10] |
[
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
Cruz A O D L,
|
[17] |
|
[18] |
|
[19] |
[
|
[20] |
[
|
[21] |
[
|
[22] |
[
|
[23] |
[
|
[24] |
[
|
[25] |
[
|
[26] |
[
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
中华人民共和国水利部. 中国水资源公报[M]. 北京: 中国水利水电出版社, 2000-2016.
[The Ministry of Water Resources of the People's Republic of China. China Water Resources Bulletin [M]. Beijing: China Water & Power Press, 2000-2016.]
|
[33] |
[
|
[34] |
[
|
[35] |
|
[36] |
中华人民共和国国家统计局. 中国人口和就业统计年鉴[M]. 北京: 中国统计出版社, 2001-2017.
[National Bureau of Statistics of the People's Republic of China. China Population & Employment Statistics Yearbook [M]. Beijing: China Statistics Press, 2001- 2017.]
|
[37] |
中华人民共和国国家统计局. 中国农村统计年鉴[M]. 北京: 中国统计出版社, 2001-2017.
[National Bureau of Statistics of the People's Republic of China. China Rural Statistical Yearbook [M]. Beijing: China Statistics Press, 2001-2017.]
|
[38] |
中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2001-2017.
[National Bureau of Statistics of the People's Republic of China. China Statistical Yearbook [M]. Beijing: China Statistics Press, 2001- 2017.]
|
[39] |
[
|
/
〈 |
|
〉 |