演化博弈视角下海外耕地投资参与主体合作行为策略
王亚萌, 田应东, 杜盼盼, 魏凤

Cooperative behavioral strategies of overseas farmland investment participants from the perspective of evolutionary game
WANG Yameng, TIAN Yingdong, DU Panpan, WEI Feng
表3 均衡点的特征值和演化稳定性(③ 由于混合策略均衡点E12E13特征值形式较为复杂,故以 Γ Λ符号代替。)
Table 3 Eigenvalues and evolutionary stability of equilibrium points
均衡点 特征值 演化稳定性
E 1 ( 0,0 , 0 ) λ 1 = R C 2 - R C 4 - R t 1 - R t 2
λ 2 = C 2 + R + R t 2 - rSα
λ 3 = rS ( - 1 + α ) < 0
λ 1 < 0 λ 2 < 0同时成立,为稳定点;否则为鞍点
E 2 ( 1,0 , 0 ) λ 1 = - R C 2 + R C 4 + R t 1 + R t 2
λ 2 = C 2 + R - R t 1 - rSα
λ 3 = rS ( - 1 + α ) < 0
λ 1 < 0 λ 2 < 0同时成立,为稳定点;否则为鞍点
E 3 ( 0,1 , 0 ) λ 1 = 0
λ 2 = - C 2 - R - R t 2 + rSα
λ 3 = R L > 0
因为 λ 1 = 0,为中心点
E 4 ( 0,0 , 1 ) λ 1 = 0
λ 2 = - C 1 - R - R L - R t 2 + rS
λ 3 = - rS ( - 1 + α ) > 0
因为 λ 1 = 0,为中心点
E 5 ( 1,0 , 1 ) λ 1 = 0
λ 2 = - C 1 - R - R L + R t 1 + rS
λ 3 = - rS ( - 1 + α ) > 0
因为 λ 1 = 0,为中心点
E 6 ( 1,1 , 0 ) λ 1 = 0
λ 2 = - C 2 - R + R t 1 + rSα
λ 3 = R L > 0
因为 λ 1 = 0,为中心点
E 7 ( 0,1 , 1 ) λ 1 = R C 1 - R C 3 - R t 1 - R t 2
λ 2 = C 1 + R + R L + R t 2 - rS
λ 3 = - R L < 0
λ 1 < 0 λ 2 < 0同时成立,为稳定点,否则为不稳定点
E 8 ( 1,1 , 1 ) λ 1 = - R C 1 + R C 3 + R t 1 + R t 2
λ 2 = C 1 + R + R L - R t 1 - rS
λ 3 = - R L < 0
λ 1 < 0 λ 2 < 0同时成立,为稳定点,否则为不稳定点
E 9 C 2 + R + R t 2 - Srα R t 1 + R t 2 , 1,0 λ 1 = 0
λ 2 = 0
λ 3 = R L > 0
因为 λ 1 < 0, λ 2 < 0,为中心点
E 10 C 1 + R + R L + R t 2 - Sr R t 1 + R t 2 , 0,1 λ 1 = 0
λ 2 = - C 1 + C 2 - R L + rS - rSα
λ 3 = - rS ( - 1 + α ) > 0
因为 λ 1 = 0,为中心点
E 11 1 , Sr ( - 1 + α ) - R L - Sr + Srα , C 2 + R - R t 1 + R L - Srα C 1 + C 2 + 2 R + R L - 2 R t 1 - Sr - Srα λ 1 = ( C 1 + R + R L - R t 1 ) ( - R C 1 + R C 3 + R t 1 + R t 2 ) ( - 1 + α ) R L + rS - rSα λ 2 = 0
λ 3 = 0
因为 λ 2 = 0, λ 3 = 0,为中心点
E 12 0 , Sr ( - 1 + α ) - R L - Sr + Srα , C 2 + R + R t 2 - Srα C 1 + C 2 + 2 R + R L + 2 R t 2 - Sr - Srα λ 1 = Γ 1
λ 2 = - Γ 2
λ 3 = Γ 2
λ 1 < 0 λ 2 < 0 λ 3 = 0同时成立,为稳定点,否则为不稳定点
E 13 x * , Sr ( - 1 + α ) - R L - Sr + Srα , z * λ 1 = Λ 0
λ 2 = Λ 1
λ 3 = Λ 2
λ 1 < 0 λ 2 < 0 λ 3 = 0同时成立,为稳定点,否则为不稳定点