信贷需求抑制对农户耕地质量提升型农业技术采用的影响——基于农户分化的调节效应分析
|
魏昊, 夏英, 李芸, 吕开宇, 王海英
|
Effects of farmers’ credit demand rationing on the adoption of agricultural technologies that improve cultivated land quality:An analysis based on the moderating effect of farmer differentiation
|
WEI Hao, XIA Ying, LI Yun, LV Kaiyu, WANG Haiying
|
|
表5 信贷需求抑制对耕地质量提升型农业技术回归结果
|
Table 5 Regression results of credit rationing and adoption of agricultural technologies that improve cultivated land quality
|
|
变量名称 | 平整土地、改良土壤 | | 少耕、免耕 | | 深耕、深松 | 回归1(probit) | 回归2(CMP) | 回归3(probit) | 回归4(CMP) | 回归5(probit) | 回归6(CMP) | 信贷需求抑制 | 0.0445 | -1.195*** | | 0.0258 | -0.793 | | 0.103 | -1.030*** | (0.41) | (-4.72) | (0.23) | (-1.59) | (1.02) | (-3.47) | 年龄 | -0.0108* | -0.00813* | -0.0139** | -0.0123** | 0.00284 | 0.00104 | (-1.83) | (-1.67) | | (-2.14) | (-2.11) | | (0.53) | (0.39) | 身体健康程度 | -0.0396 | -0.0101 | | 0.0841 | 0.0916 | | 0.0579 | 0.0415 | (-0.18) | (-0.05) | | (0.38) | (0.43) | | (0.30) | (0.23) | 教育水平 | 0.00191* | 0.0014* | | 0.0471** | 0.0428** | | 0.00537 | 0.00325 | (1.65) | (1.68) | | (2.48) | (2.45) | | (0.33) | (0.21) | 耕地规模 | 0.000603* | 0.00030* | | 0.0000441 | -0.000011 | | 0.000572* | 0.000547* | (1.61) | (1.71) | | (0.1) | (-0.03) | | (1.65) | (1.68) | 年均纯收入 | 0.00262 | 0.00300** | | -0.00496 | -0.0065 | | -0.000846 | 0.00679* | (0.68) | (2.19) | | (-0.93) | (-1.27) | | (-0.24) | (1.94) | 家庭人口数 | 0.033 | 0.0281 | | -0.0388 | -0.0343 | | -0.0179 | -0.0156 | (0.88) | (0.84) | | (-0.93) | (-0.87) | | (-0.56) | (-0.54) | 农业劳动力占比 | 0.120 | -0.0209 | | -0.362 | -0.300 | | -0.132 | 0.00645 | (0.47) | (-0.12) | (-1.39) | (-1.28) | (-0.61) | (0.03) | 土地是否确权 | -0.0235 | 0.0343 | -0.0903 | -0.027 | -0.210 | -0.225 | | (-0.14) | (0.24) | (-0.56) | (-0.19) | (-1.41) | (-1.60) | 耕地细碎化程度 | -0.00331 | 0.00133 | 0.00284 | 0.00523 | -0.00163 | -0.00267 | (-0.70) | (0.25) | | (0.61) | (1.17) | | (-0.39) | (-0.64) | 社会资本 | 0.105 | 0.154 | | 0.00717 | -0.0357 | | -0.107 | -0.0247 | (0.88) | (1.44) | | (0.06) | (-0.30) | | (-1.04) | (-0.25) | 技术培训次数 | 0.0202* | 0.0106* | | -0.00642 | -0.0102 | | -0.0131 | -0.00397 | (1.74) | (1.91) | | (-0.39) | (-0.63) | | (-0.96) | (-0.30) | 村技术推广次数 | 0.0164 | 0.0268 | | 0.0217 | 0.0304 | | 0.0411 | 0.0162 | (0.49) | (0.96) | | (0.52) | (0.83) | | (1.38) | (0.55) | 技术示范户 | 0.182 | 0.17 | | -0.136 | -0.112 | | 0.104 | 0.0567 | (1.51) | (1.47) | | (-1.04) | (-0.89) | | (0.96) | (0.56) | 能否灌溉 | - | - | | -0.473*** | -0.355*** | | 0.233* | 0.104* | | - | - | (-3.35) | (-2.74) | (1.88) | (1.89) | 土壤质量 | - | - | 0.106 | 0.095* | -0.0914 | -0.0679 | | - | - | (1.57) | (1.72) | (-1.23) | (-0.97) | 地块面积 | - | - | -0.00186 | -0.0014 | 0.00346* | 0.00233 | | - | - | (-0.94) | (-0.73) | (1.85) | (1.36) | 是否转入地块 | - | - | -0.174 | -0.176* | -0.121 | -0.0464 | | - | - | (-1.42) | (-1.61) | (-1.14) | (-0.50) | 黑龙江虚拟变量 | 0.279 | 0.0355 | -3.031*** | -2.801*** | -0.531*** | -0.251 | (1.63) | (0.23) | | (-14.77) | (-9.89) | | (-3.65) | (-1.36) | 四川虚拟变量 | 0.680*** | 0.136 | | -2.619*** | -2.629*** | | -1.229*** | -0.589* | (3.83) | (0.64) | | (-13.45) | (-12.04) | | (-7.88) | (-1.88) | 浙江虚拟变量 | -0.407** | -0.255* | | -2.504*** | -2.688*** | | 0.0942 | 0.729*** | (-2.20) | (-1.57) | | (-12.54) | (-14.24) | | (0.60) | (3.36) | 常数项 | -1.138** | -0.00416 | | 1.521** | 2.057*** | | 0.436 | -0.687 | (-2.25) | (-0.01) | | (2.53) | (3.86) | | (0.88) | (-1.48) | atanhrh-12 | - | 1.005*** | | - | 0.811** | | - | -1.203** | (3.02) | | (2.55) | (-2.60) | 一阶段估计 | 信贷需求抑制 | | 信贷需求抑制 | 信贷需求抑制 | 金融项目参与数 | - | -0.180*** | - | -0.181*** | - | -0.161*** | (-5.08) | | (-4.70) | (-3.90) | 观察值个数 | 957 | | 957 | 924 | 对数似然值 | -392.08308 | -968.13921 | -354.47194 | -929.99739 | -532.25895 | -1106.5542 | LR卡方值 | 36.77 | - | 532.79 | - | 211.11 | - | wald卡方值 | - | 320.22 | - | 566.61 | - | 533.18 | hausman检验 | - | 29.77 | - | 54.78 | - | 42.79 |
|
|
|