基于水-土要素匹配视角的农业碳排放时空分异及影响因素——以长江经济带为例
|
王若梅,马海良,王锦
|
Spatial and temporal differences of agricultural carbon emissions and impact factors of the Yangtze River Economic Belt based on a water-land perspective
|
Ruomei WANG,Hailiang MA,Jin WANG
|
|
表3 2009—2016年长江经济带各省市农业碳排放总量及分省情况
|
Table 3 Total and provincial agricultural carbon emissions in the Yangtze River Economic Belt, 2009-2016 (104 t)
|
|
| 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 上海 | 24.1105 | 24.8596 | 25.4632 | 26.7494 | 28.4071 | 27.2042 | 26.4290 | 25.9675 | 江苏 | 160.8368 | 183.3240 | 200.1078 | 226.6756 | 175.1711 | 184.7212 | 205.7262 | 201.4956 | 浙江 | 161.8361 | 173.6265 | 177.6728 | 180.8789 | 185.5606 | 187.0194 | 190.7356 | 192.6016 | 安徽 | 88.2056 | 91.4322 | 98.7334 | 98.7212 | 106.9616 | 107.3732 | 100.9628 | 107.0222 | 江西 | 51.1971 | 55.6337 | 55.1314 | 50.4753 | 52.8759 | 61.3779 | 56.3126 | 58.9359 | 湖北 | 196.9057 | 185.2817 | 218.8486 | 228.1117 | 231.9927 | 241.4533 | 238.2608 | 190.3076 | 湖南 | 186.9928 | 179.4227 | 203.2128 | 219.4933 | 234.3851 | 233.5892 | 242.7312 | 250.4563 | 四川 | 122.1268 | 119.7062 | 116.9934 | 135.7664 | 140.1304 | 139.5349 | 136.5577 | 125.0845 | 贵州 | 86.1664 | 74.0387 | 59.3640 | 68.2037 | 80.7622 | 87.9281 | 92.5454 | 122.1312 | 云南 | 130.3619 | 132.1439 | 120.2034 | 122.3277 | 120.5847 | 130.2608 | 147.1418 | 133.2822 | 长江经济带 | 1208.7398 | 1219.4692 | 1275.7309 | 1357.4032 | 1356.8314 | 1400.4623 | 1437.4032 | 1407.2846 |
|
|
|