基于水-土要素匹配视角的农业碳排放时空分异及影响因素——以长江经济带为例
|
王若梅,马海良,王锦
|
Spatial and temporal differences of agricultural carbon emissions and impact factors of the Yangtze River Economic Belt based on a water-land perspective
|
Ruomei WANG,Hailiang MA,Jin WANG
|
|
表2 2009—2016年长江经济带水-土资源匹配度情况
|
Table 2 Matching degree of water and land (MDWL) in the Yangtze River Economic Belt, 2009-2016 (106 m3/km2)
|
|
| 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 上海 | 0.2935 | 0.2595 | 0.1461 | 0.2710 | 0.1968 | 0.3446 | 0.4653 | 0.4426 | 江苏 | 0.4742 | 0.4598 | 0.5936 | 0.4502 | 0.3240 | 0.4397 | 0.6181 | 0.7609 | 浙江 | 2.3060 | 3.2863 | 1.7434 | 3.3633 | 2.1824 | 2.6196 | 3.2367 | 2.9973 | 安徽 | 0.7233 | 0.8903 | 0.5847 | 0.6431 | 0.5450 | 0.6959 | 0.8491 | 1.1578 | 江西 | 2.4616 | 4.6462 | 2.1978 | 4.5257 | 3.0600 | 3.4391 | 4.0699 | 4.5281 | 湖北 | 0.8233 | 1.1468 | 0.6851 | 0.7528 | 0.8183 | 0.9455 | 1.0141 | 1.3874 | 湖南 | 1.9885 | 2.6329 | 1.5276 | 2.7421 | 2.2388 | 2.6119 | 2.7322 | 3.1265 | 重庆 | 0.4169 | 0.4365 | 0.5715 | 0.5906 | 0.5654 | 0.7723 | 0.6130 | 0.8354 | 四川 | 1.9202 | 2.1179 | 1.8291 | 2.5470 | 2.1089 | 2.3310 | 1.9469 | 2.0278 | 贵州 | 1.0094 | 1.0334 | 0.7111 | 1.0132 | 0.8756 | 1.4127 | 1.4161 | 1.3233 | 云南 | 1.7115 | 2.0110 | 1.5543 | 1.8549 | 1.8818 | 1.9231 | 2.1011 | 2.3568 | 长江经济带 | 1.2767 | 1.6286 | 1.1233 | 1.5941 | 1.3080 | 1.5238 | 1.5955 | 1.7788 |
|
|
|