基于农户受偿意愿的休耕补偿标准探讨——以河北样本户为例
曾黎, 杨庆媛, 廖俊儒, 陈展图, 陈伊多, 杨人豪

Fallow compensation based on farmer willingness to accept in Hebei
Li ZENG, Qingyuan YANG, Junru LIAO, Zhantu CHEN, Yiduo CHEN, Renhao YANG
表3 模型回归结果
Table 3 Results of Binary Logistic models
变量代码 模型1(B) Exp (B) 模型2(B) Exp (B) 模型3(B) Exp (B) 模型4(B) Exp (B)
Igender -0.099
(0.885)
0.906 -0.618
(0.400)
0.539 -0.654
(0.384)
0.520 -0.702
(0.406)
0.495
Iage 0.048***
(0.002)
1.049 0.054***
(0.001)
1.056 0.061***
(0.001)
1.063 0.072***
(0.001)
1.075
Ihealth -0.022
(0.923)
0.978 -0.029
(0.908)
0.971 -0.101
(0.705)
0.904 -0.229
(0.450)
0.795
Iedu 0.092
(0.655)
1.097 0.133
(0.527)
1.142 0.145
(0.513)
1.156 0.107
(0.667)
1.113
Icadre 1.645
(0.116)
5.183 1.492
(0.159)
4.445 1.328
(0.216)
3.775 0.602
(0.601)
1.826
Ffamily -0.261**
(0.031)
0.770 -0.246*
(0.081)
0.782 -0.338**
(0.049)
0.713
Flabour 0.838
(0.163)
2.312 0.945
(0.145)
2.572 1.479**
(0.044)
4.389
Fprof 1.482**
(0.013)
4.401 -1.420
(0.468)
0.242 -1.960
(0.380)
0.141
Finc 0.000
(0.295)
1.000 0.000
(0.843)
1.000 0.000
(0.591)
1.000
Pfarm -3.810
(0.102)
0.022 -5.341**
(0.050)
0.005
Proi 0.795***
(0.005)
2.214 0.739**
(0.016)
2.093
Ppcland -3.473
(0.189)
0.031 -4.228
(0.154)
0.015
Pfrag 0.031
(0.269)
1.031 0.022
(0.465)
1.022
Csubj -0.104
(0.421)
0.901
Cpurp -1.043
(0.168)
0.352
Ccogn 1.661***
(0.006)
5.265
Csati 1.500***
(0.000)
4.480
Cexpect 0.075*
(0.071)
1.078
D -1.135 0.321 -1.684 0.186 0.215 1.240 -6.570 0.001
-2LL 234.307 194.254 102.561 87.379
Nagelkerke R2 0.079 0.219 51.312 66.544
预测准确率(%) 88.640 89.213 90.019 91.901
卡方值 13.574 39.183 53.635 90.502
sig. 0.019 0.000 0.000 0.000