基于空间自相关的区域农地变化驱动力研究——以珠三角地区为例
|
曹祺文, 吴健生, 仝德, 张晓娜, 卢志强, 司梦林
|
Drivers of regional agricultural land changes based on spatial autocorrelation in the Pearl River Delta,China
|
CAO Qiwen,WU Jiansheng,TONG De,ZHANG Xiaona,LU Zhiqiang,SI Menglin
|
|
表5 珠三角地区耕地变化驱动力回归模型对比 |
Table 5 Comparison of regression models for driving forces of cultivated land change |
|
解释变量 | Logistic | AutoLogistic | 参数β值 估计 | 标准误差 SE | 检验统计量 Wald χ2 | Pr>χ2 | 发生比率 | 参数β值 估计 | 标准误差 SE | 检验统计量 Wald χ2 | Pr>χ2 | 发生比率 | θ_preciptation | -0.000 14 | 0.000 6 | 0.063 | 0.802 | 0.999 8 | 0.001 02 | 0.000 6 | 2.541 | 0.111 | 1.001 0 | θ_temperature | -2.332 41** | 0.862 8 | 7.307 | 0.007 | 0.097 1 | -0.754 10 | 0.919 1 | 0.673 | 0.412 | 0.470 4 | θ_sunshine | -0.003 26* | 0.001 3 | 6.072 | 0.014 | 0.9967 | -0.003 46* | 0.001 4 | 5.739 | 0.017 | 0.996 5 | Elevation | -0.003 18 | 0.001 6 | 3.720 | 0.054 | 0.996 8 | -0.000 71 | 0.001 5 | 0.212 | 0.645 | 0.999 3 | Slope | -0.007 75 | 0.015 4 | 0.253 | 0.615 | 0.992 3 | -0.019 39 | 0.015 9 | 1.489 | 0.222 | 0.980 8 | Aspect | 0.104 53 | 0.057 0 | 3.366 | 0.067 | 1.110 2 | 0.131 29* | 0.060 3 | 4.744 | 0.029 | 1.140 3 | OM | -0.002 39* | 0.001 0 | 5.610 | 0.018 | 0.997 6 | -0.001 23 | 0.001 0 | 1.463 | 0.226 | 0.998 8 | Pop_density | 0.000 60 | 0.000 3 | 3.442 | 0.064 | 1.000 1 | 0.000 09* | 0.000 0 | 6.265 | 0.012 | 1.000 1 | Rural_pop_density | 0.000 29 | 0.000 2 | 2.793 | 0.095 | 1.000 3 | 0.000 21 | 0.000 2 | 1.260 | 0.262 | 1.000 2 | Invest | -0.000 10** | 2.79E-8 | 7.320 | 0.007 | 0.999 9 | -0.000 01* | 2.88E-8 | 5.274 | 0.022 | 0.999 9 | Power | -0.000 10 | 0.51E-8 | 2.941 | 0.086 | 0.999 0 | 0.000 01 | 0.58E-8 | 1.933 | 0.164 | 1.000 1 | GDP | 0.000 08** | 0.04E-8 | 362.849 | 0.000 | 1.001 0 | 0.000 06** | 0.05E-8 | 159.412 | 0.000 | 1.000 1 | DIS2center | 0.000 04 | 0.000 1 | 3.189 | 0.074 | 1.000 1 | 0.000 04 | 0.000 1 | 2.282 | 0.131 | 1.000 1 | DIS2road | -0.000 90** | 0.000 2 | 9.095 | 0.003 | 0.999 0 | -0.000 04 | 0.000 1 | 2.003 | 0.157 | 0.999 5 | DIS2railway | -0.000 40** | 0.05E-8 | 63.836 | 0.000 | 0.999 9 | -0.000 02** | 0.05E-8 | 21.539 | 0.000 | 0.999 9 | DIS2residential | 0.000 01 | 0.000 1 | 0.447 | 0.504 | 1.000 1 | 0.000 02 | 0.000 1 | 1.229 | 0.268 | 1.000 1 | DIS2river | -0.000 01 | 0.000 1 | 0.721 | 0.396 | 0.999 9 | 0.000 01 | 0.000 1 | 0.612 | 0.434 | 1.000 1 | Lag_crop | | | | | | 2.361 23** | 0.158 9 | 220.566 | 0.000 | 10.604 0 | Lag_light | | | | | | 0.008 39* | 0.003 9 | 4.435 | 0.035 | 1.008 4 | 常数Constant | -1.702 33** | 0.409 7 | 17.267 | 0.000 | 0.182 2 | -2.739 45** | 0.439 7 | 38.815 | 0.000 | 0.064 6 | 模型参数 | LR χ2(17)=1 473.39 P=0.000 ROC=0.841 0 预测正确率PCP=78.72% | LR χ2(19)=1 785.98 P=0.000 ROC=0.8 693 预测正确率PCP=80.30% |
|
|
|