Resources Science ›› 2020, Vol. 42 ›› Issue (6): 1040-1051.doi: 10.18402/resci.2020.06.03
Previous Articles Next Articles
YAN Qingyou1(), GUI Zengkan1(
), ZHANG Wenhua1, CHEN Lizhong2
Received:
2019-09-30
Revised:
2020-02-10
Online:
2020-06-25
Published:
2020-08-25
Contact:
GUI Zengkan
E-mail:yanqingyou@263.net;gzkmail@126.com
YAN Qingyou, GUI Zengkan, ZHANG Wenhua, CHEN Lizhong. The heterogeneity of regional energy shadow price and energy environment efficiency in China[J].Resources Science, 2020, 42(6): 1040-1051.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Descriptive statistics of inputs and outputs"
变量 | 单位 | 平均值 | 最大值 | 最小值 | 标准差 | |
---|---|---|---|---|---|---|
A组 | 资本存量 | 亿元 | 33712.932 | 177723.015 | 1157.632 | 33000.163 |
劳动力 | 万人 | 2283.834 | 6310.014 | 330.974 | 1705.803 | |
能源消费量 | 万t标准煤 | 11880.717 | 32342.004 | 479.955 | 8389.987 | |
地区生产总值 | 亿元 | 14687.278 | 62401.513 | 526.829 | 12816.087 | |
环境污染指数 | 0.193 | 0.595 | 0.013 | 0.154 | ||
B组 | 资本存量 | 亿元 | 25605.809 | 141653.974 | 2375.282 | 24906.032 |
劳动力 | 万人 | 3040.019 | 6746.432 | 1044.624 | 1415.241 | |
能源消费量 | 万t标准煤 | 9909.742 | 23647.109 | 2329.007 | 5124.148 | |
地区生产总值 | 亿元 | 8547.678 | 29348.583 | 1747.442 | 5666.173 | |
环境污染指数 | 0.216 | 0.509 | 0.091 | 0.092 | ||
C组 | 资本存量 | 亿元 | 20801.614 | 190365.189 | 710.265 | 29382.224 |
劳动力 | 万人 | 1964.539 | 5960.014 | 238.578 | 1530.583 | |
能源消费量 | 万t标准煤 | 11319.868 | 38899.253 | 897.219 | 9259.562 | |
地区生产总值 | 亿元 | 6739.013 | 51736.438 | 294.534 | 8783.717 | |
环境污染指数 | 0.267 | 0.785 | 0.014 | 0.190 |
Table 2
Decomposition and improvement potential of energy inefficiency in some selected provinces in China"
地区 | ETol | ETI | EMI | 改善策略 | 地区 | ETol | ETI | EMI | 改善策略 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
技术 | 管理 | 技术 | 管理 | ||||||||||
A组 | 北京 | 0.251 | 0.000 | 0.251 | √ | 广西 | 0.415 | 0.354 | 0.061 | √ | |||
天津 | 0.334 | 0.000 | 0.334 | √ | 重庆 | 0.479 | 0.416 | 0.063 | √ | ||||
辽宁 | 0.438 | 0.000 | 0.438 | √ | 四川 | 0.591 | 0.449 | 0.141 | √ | ||||
上海 | 0.293 | 0.000 | 0.293 | √ | 陕西 | 0.564 | 0.419 | 0.146 | √ | ||||
江苏 | 0.369 | 0.000 | 0.369 | √ | 平均 | 0.493 | 0.380 | 0.113 | |||||
浙江 | 0.363 | 0.000 | 0.363 | √ | C组 | 河北 | 0.674 | 0.314 | 0.359 | √ | √ | ||
福建 | 0.267 | 0.000 | 0.267 | √ | 山西 | 0.796 | 0.176 | 0.620 | √ | ||||
广东 | 0.007 | 0.000 | 0.007 | √ | 内蒙古 | 0.619 | 0.235 | 0.384 | √ | ||||
海南 | 0.037 | 0.000 | 0.037 | √ | 山东 | 0.541 | 0.333 | 0.207 | √ | ||||
平均 | 0.262 | 0.000 | 0.262 | 贵州 | 0.734 | 0.136 | 0.597 | √ | |||||
B组 | 吉林 | 0.475 | 0.259 | 0.216 | √ | √ | 云南 | 0.585 | 0.289 | 0.296 | √ | √ | |
黑龙江 | 0.503 | 0.345 | 0.158 | √ | 甘肃 | 0.619 | 0.192 | 0.427 | √ | ||||
安徽 | 0.485 | 0.423 | 0.062 | √ | 青海 | 0.389 | 0.266 | 0.123 | √ | ||||
江西 | 0.353 | 0.337 | 0.016 | √ | 宁夏 | 0.522 | 0.332 | 0.190 | √ | ||||
河南 | 0.550 | 0.420 | 0.130 | √ | 新疆 | 0.702 | 0.134 | 0.568 | √ | ||||
湖北 | 0.569 | 0.388 | 0.180 | √ | 平均 | 0.618 | 0.241 | 0.377 | |||||
湖南 | 0.436 | 0.363 | 0.073 | √ | 全国 | 0.465 | 0.219 | 0.246 |
"
地区 | 群组前沿 | 共同前沿 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
2000—2005 | 2006—2011 | 2012—2017 | 2000—2017 | 2000—2005 | 2006—2011 | 2012—2017 | 2000—2017 | |||
A组 | 北京 | 0.623 | 0.755 | 1.296 | 0.891 | 0.625 | 0.758 | 1.302 | 0.895 | |
天津 | 0.476 | 0.562 | 0.649 | 0.562 | 0.478 | 0.574 | 0.657 | 0.570 | ||
辽宁 | 0.376 | 0.455 | 0.675 | 0.502 | 0.382 | 0.458 | 0.678 | 0.506 | ||
上海 | 0.561 | 0.574 | 0.653 | 0.596 | 0.563 | 0.576 | 0.658 | 0.599 | ||
江苏 | 0.630 | 0.628 | 0.729 | 0.662 | 0.636 | 0.630 | 0.729 | 0.665 | ||
浙江 | 0.594 | 0.696 | 0.773 | 0.688 | 0.600 | 0.702 | 0.773 | 0.692 | ||
福建 | 0.655 | 0.694 | 0.939 | 0.763 | 0.669 | 0.699 | 0.942 | 0.770 | ||
广东 | 0.736 | 0.825 | 0.947 | 0.836 | 0.740 | 0.830 | 0.949 | 0.840 | ||
海南 | 0.740 | 0.806 | 0.952 | 0.833 | 0.744 | 0.821 | 0.958 | 0.841 | ||
平均 | 0.599 | 0.666 | 0.846 | 0.704 | 0.604 | 0.672 | 0.850 | 0.709 | ||
B组 | 吉林 | 0.319 | 0.583 | 0.882 | 0.595 | 0.347 | 0.603 | 0.893 | 0.614 | |
黑龙江 | 0.361 | 0.424 | 0.632 | 0.472 | 0.442 | 0.471 | 0.708 | 0.540 | ||
安徽 | 0.382 | 0.570 | 0.918 | 0.623 | 0.483 | 0.625 | 0.959 | 0.689 | ||
江西 | 0.372 | 0.530 | 0.842 | 0.582 | 0.472 | 0.697 | 0.975 | 0.715 | ||
河南 | 0.258 | 0.545 | 0.661 | 0.488 | 0.322 | 0.586 | 0.733 | 0.547 | ||
湖北 | 0.480 | 0.531 | 0.812 | 0.608 | 0.527 | 0.550 | 0.844 | 0.640 | ||
湖南 | 0.215 | 0.476 | 0.800 | 0.497 | 0.289 | 0.503 | 0.845 | 0.546 | ||
广西 | 0.272 | 0.462 | 0.723 | 0.486 | 0.315 | 0.659 | 0.894 | 0.623 | ||
重庆 | 0.503 | 0.556 | 0.796 | 0.618 | 0.539 | 0.577 | 0.860 | 0.658 | ||
四川 | 0.414 | 0.457 | 0.710 | 0.527 | 0.448 | 0.515 | 0.796 | 0.586 | ||
陕西 | 0.451 | 0.581 | 0.748 | 0.593 | 0.501 | 0.603 | 0.824 | 0.643 | ||
平均 | 0.366 | 0.520 | 0.775 | 0.554 | 0.426 | 0.581 | 0.848 | 0.619 | ||
C组 | 河北 | 0.261 | 0.329 | 0.446 | 0.345 | 0.370 | 0.425 | 0.674 | 0.490 | |
山西 | 0.174 | 0.249 | 0.352 | 0.258 | 0.207 | 0.312 | 0.508 | 0.343 | ||
内蒙古 | 0.170 | 0.256 | 0.313 | 0.246 | 0.218 | 0.368 | 0.554 | 0.380 | ||
山东 | 0.275 | 0.330 | 0.465 | 0.357 | 0.497 | 0.556 | 0.750 | 0.601 | ||
贵州 | 0.196 | 0.232 | 0.377 | 0.268 | 0.309 | 0.401 | 0.650 | 0.453 | ||
云南 | 0.261 | 0.241 | 0.441 | 0.314 | 0.457 | 0.526 | 0.820 | 0.601 | ||
甘肃 | 0.206 | 0.218 | 0.368 | 0.264 | 0.345 | 0.430 | 0.655 | 0.477 | ||
青海 | 0.277 | 0.368 | 0.415 | 0.353 | 0.351 | 0.385 | 0.488 | 0.408 | ||
宁夏 | 0.265 | 0.283 | 0.319 | 0.289 | 0.265 | 0.341 | 0.444 | 0.350 | ||
新疆 | 0.219 | 0.233 | 0.279 | 0.243 | 0.398 | 0.424 | 0.461 | 0.427 | ||
平均 | 0.230 | 0.274 | 0.377 | 0.294 | 0.342 | 0.417 | 0.600 | 0.453 | ||
全国平均 | 0.391 | 0.482 | 0.664 | 0.512 | 0.451 | 0.553 | 0.766 | 0.590 |
Table 4
Regression result of influencing factors of regional energy shadow price in China"
变量 | 全国 | A组 | B组 | C组 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
系数 | t值 | P值 | 系数 | t值 | P值 | 系数 | t值 | P值 | 系数 | t值 | P值 | ||||
GI | -0.268 | -1.586 | 0.073 | -0.507 | -0.880 | 0.202 | -0.388 | -1.996 | 0.045 | -0.295 | -1.703 | 0.072 | |||
IS | -0.089 | -1.551 | 0.079 | -0.311 | -1.045 | 0.181 | -0.279 | -2.071 | 0.040 | -0.469 | -5.063 | 0.000 | |||
MR | 0.012 | 1.427 | 0.099 | 0.024 | 2.144 | 0.034 | 0.001 | 0.094 | 0.925 | 0.004 | 0.726 | 0.239 | |||
EE | -0.027 | -5.042 | 0.000 | -0.177 | -1.246 | 0.116 | -0.032 | -2.448 | 0.015 | -0.002 | -2.181 | 0.037 | |||
EC | -0.536 | -6.018 | 0.000 | -1.184 | -6.095 | 0.000 | -0.521 | -4.386 | 0.000 | -0.191 | -2.355 | 0.020 |
[1] |
Ju K Y, Su B, Zhou D Q, et al. Does energy-price regulation benefit China’s economy and environment? Evidence from energy-price distortions[J]. Energy Policy, 2017,105:108-119.
doi: 10.1016/j.enpol.2017.02.031 |
[2] | 冷艳丽, 杜思正. 能源价格扭曲与雾霾污染: 中国的经验证据[J]. 产业经济研究, 2016,80(1):71-79. |
[ Leng Y L, Du S Z. Energy price distortion and haze pollution: The evidence from China[J]. Industrial Economics Research, 2016,80(1):71-79.] | |
[3] |
Wang X L, Bai M Q, Xie C P. Investigating CO2 mitigation potentials and the impact of oil price distortion in China’s transport sector[J]. Energy Policy, 2019,130:320-327.
doi: 10.1016/j.enpol.2019.04.003 |
[4] |
Lai P H, Du M Z, Wang B, et al. Assessment and decomposition of total factor energy efficiency: An evidence based on energy shadow price in China[J]. Sustainability, 2016, DOI: 10.3390/su8050408.
doi: 10.3390/su8101040 pmid: 28008371 |
[5] |
Zhang X P, Xu Q N, Zhang F, et al. Exploring shadow prices of carbon emissions at provincial levels in China[J]. Ecological Indicators, 2014,46:407-414.
doi: 10.1016/j.ecolind.2014.07.007 |
[6] |
Tamaki T, Shin K J, Nakamura H, et al. Shadow prices and production inefficiency of mineral resources[J]. Economic Analysis and Policy, 2018,57:111-121.
doi: 10.1016/j.eap.2017.03.005 |
[7] | 陈欣, 刘延. 中国二氧化碳影子价格估算及与交易价格差异分析: 基于二次型方向性距离产出函数[J]. 生态经济, 2018,34(6):14-20. |
[ Chen X, Liu Y. Estimation of China’s carbon dioxide shadow price and analysis of the difference in transaction price: Output function based on quadratic directional distance[J]. Ecological Economy, 2018,34(6):14-20.] | |
[8] |
Zhao Q Z, Yan Q Y, Zhang L J, et al. Dynamic and spatial character analysis of regional marginal abatement costs of CO2 emissions from energy consumption: A provincial aspect[J]. Polish Journal of Environmental Studies, 2019,28(4):2501-2511.
doi: 10.15244/pjoes/90479 |
[9] |
Wang K, Che L N, Ma C B, et al. The shadow price of CO2 emissions in China’s iron and steel industry[J]. Science of the Total Environment, 2017,598:272-281.
doi: 10.1016/j.scitotenv.2017.04.089 pmid: 28445824 |
[10] |
Singbo A G, Lansink A O, Emvalomatis G. Estimating shadow prices and efficiency analysis of productive inputs and pesticide use of vegetable production[J]. European Journal of Operational Research, 2015,245(1):265-272.
doi: 10.1016/j.ejor.2015.02.042 |
[11] |
Choi Y, Zhang N, Zhou P. Efficiency and abatement costs of energy-related CO2 emissions in China: A slacks-based efficiency measure[J]. Applied Energy, 2012,98(5):198-208.
doi: 10.1016/j.apenergy.2012.03.024 |
[12] | Yan Q Y, Wang Y X, Tomas B, et al. Energy-related CO2 emission in China’s provincial thermal electricity generation: Driving factors and possibilities for abatement[J]. Energy, 2018,11(5):1096-1118. |
[13] |
Sheng P F, Yang J, Shackman J D. Energy’s shadow price and energy efficiency in China: A non-parametric input distance function analysis[J]. Energies, 2015,8(3):1975-1989.
doi: 10.3390/en8031975 |
[14] | 吴凡, 刘雪娇, 谢文秀. 要素配置优化与中国区域能源影子价格[J]. 现代财经(天津财经大学学报), 2017,37(3):93-101. |
[ Wu F, Liu X J, Xie W X. Factor configuration optimization and regional energy shadow price in China[J]. Modern Finance and Economics-Journal of Tianjin University of Finance and Economics, 2017,37(3):93-101.] | |
[15] |
Fukuyama H, Weber W L. A directional slacks: Based measure of technical inefficiency[J]. Socio-Economic Planning Sciences, 2009,43(4):274-287.
doi: 10.1016/j.seps.2008.12.001 |
[16] |
Zhang N, Kong F B, Yu Y N. Measuring ecological total-factor energy efficiency incorporating regional heterogeneities in China[J]. Ecological Indicators, 2015,51:165-172.
doi: 10.1016/j.ecolind.2014.07.041 |
[17] |
Yu Y T, Huang J H, Zhang N. Modeling the eco-efficiency of Chinese prefecture-level cities with regional heterogeneities: A comparative perspective[J]. Ecological Modelling, 2019,402:1-17.
doi: 10.1016/j.ecolmodel.2019.03.012 |
[18] |
Battese G E, Rao D S P, O’Donnell C J. A metafrontier production function for estimation of technical efficiencies and technology gaps for firms operating under different technologies[J]. Journal of Productivity Analysis, 2004,21:91-103.
doi: 10.1023/B:PROD.0000012454.06094.29 |
[19] | 方琳, 吴凤平, 王新华, 等. 基于共同前沿SBM模型的农业用水效率测度及改善潜力[J]. 长江流域资源与环境, 2018,27(10):2293-2304. |
[ Fang L, Wu F P, Wang X H, et al. Analysis of agricultural water efficiency measurement and improvement potential based on meta frontier SBM model[J]. Resources and Environment in the Yangtze Basin, 2018,27(10):2293-2304.] | |
[20] |
Long X L, Luo Y S, Sun H P, et al. Fertilizer using intensity and environmental efficiency for China’s agriculture sector from 1997 to 2014[J]. Natural Hazards, 2018,92:1573-1591.
doi: 10.1007/s11069-018-3265-4 |
[21] | 国涓, 刘丰, 王维国. 中国区域环境绩效动态差异及影响因素: 考虑可变规模报酬和技术异质性的研究[J]. 资源科学, 2013,35(12):2444-2456. |
[ Guo J, Liu F, Wang W G. Dynamic differences and factors affecting regional environmental performance in China: Variable return to scale and technology heterogeneity[J]. Resources Science, 2013,35(12):2444-2456.] | |
[22] |
Lin B Q, Tan R P. Ecological total-factor energy efficiency of China’s energy intensive industries[J]. Ecological Indicators, 2016,70:480-497.
doi: 10.1016/j.ecolind.2016.06.026 |
[23] | Li J L, Lin B Q. Ecological total-factor energy efficiency of China’s heavy and light industries: Which performs better[J]. Renewable & Sustainable Energy Reviews, 2017,72:83-94. |
[24] |
聂雷, 郭忠兴, 彭冲. 基于SBM-Undesirable和Meta-frontier模型的城市建设用地利用效率研究[J]. 资源科学, 2017,39(5):836-845.
doi: 10.18402/resci.2017.05.04 |
[ Nie L, Guo Z X, Peng C. Construction land utilization efficiency based on SBM-Undesirable and Meta-frontier model[J]. Resources Science, 2017,39(5):836-845.] | |
[25] | 陈诗一. 工业二氧化碳的影子价格: 参数化和非参数化方法[J]. 世界经济, 2010,33(8):93-111. |
[ Chen S Y. Shadow price of industrial carbon dioxide: Parametric and nonparametric approach[J]. The Journal of World Economy, 2010,33(8):93-111.] | |
[26] |
Chiu C R, Liou J L, Wu P I, et al. Decomposition of the environmental inefficiency of the meta-frontier with undesirable output[J]. Energy Economics, 2012,34(5):1392-1399.
doi: 10.1016/j.eneco.2012.06.003 |
[27] | 张军, 吴桂英, 张吉鹏. 中国省际物质资本存量估算: 1952-2000[J]. 经济研究, 2004, (10):35-44. |
[ Zhang J, Wu G Y, Zhang J P. The estimation of China’s provincial capital stock: 1952-2000[J]. Economic Research Journal, 2004, (10):35-44.] | |
[28] | 中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2001- 2018. |
[National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook[M]. Beijing: China Statistics Press, 2001- 2018.] | |
[29] | 国家统计局能源统计司, 国家能源局综合司. 中国能源统计年鉴[M]. 北京: 中国统计出版社, 2001- 2018. |
[Department of Energy Statistics, National Bureau of Statistics of the People’s Republic of China, Department of General Affairs National Energy Administration of the People’s Republic of China. China Energy Statistical Yearbook[M]. Beijing: China Statistics Press, 2001- 2018.] | |
[30] |
Yao X, Zhou H C, Zhang A Z, et al. Regional energy efficiency, carbon emission performance and technology gaps in China: A meta-frontier non-radial directional distance function analysis[J]. Energy Policy, 2015,84:142-154.
doi: 10.1016/j.enpol.2015.05.001 |
|