Resources Science ›› 2021, Vol. 43 ›› Issue (11): 2331-2341.doi: 10.18402/resci.2021.11.15
Previous Articles Next Articles
WANG Liangdong1(), WU Leying1(
), CHEN Yulong1, MA Xiaozhe2,3, DU Mengna1
Received:
2021-02-23
Revised:
2021-04-06
Online:
2021-11-25
Published:
2022-01-27
Contact:
WU Leying
WANG Liangdong, WU Leying, CHEN Yulong, MA Xiaozhe, DU Mengna. Carbon peak time and peak level of relevant provinces in the Yellow River Basin under stable economic growth[J].Resources Science, 2021, 43(11): 2331-2341.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Basic situation of relevant provinces in the Yellow River Basin, 2017 (%)
GDP 全国占比 | 人口 全国占比 | 能源消费 全国占比 | 碳排放 全国占比 | 区域三次产业 增加值结构 | |
---|---|---|---|---|---|
总体 | 21.8 | 24.2 | 29.1 | 43.5 | 8.1: 45.1: 46.8 |
山西 | 1.8 | 2.7 | 4.4 | 13.2 | 5.2: 41.3: 53.5 |
内蒙古 | 1.9 | 1.8 | 4.4 | 6.6 | 11.1: 39.4: 49.5 |
山东 | 8.6 | 7.2 | 8.5 | 9.5 | 6.7: 45.3: 48.0 |
河南 | 5.3 | 6.9 | 5.0 | 4.8 | 9.6: 47.7: 42.7 |
陕西 | 2.6 | 2.8 | 2.8 | 5.5 | 8.0: 49.7: 42.3 |
甘肃 | 0.9 | 1.9 | 1.7 | 1.5 | 11.5: 34.4: 54.1 |
青海 | 0.3 | 0.4 | 0.9 | 0.4 | 9.7: 39.6: 50.7 |
宁夏 | 0.4 | 0.5 | 1.4 | 2.0 | 7.3: 45.9: 46.8 |
Table 3
Elasticity coefficient of carbon emission of relevant provinces in the Yellow River Basin under three scenarios
地区 | 年份 | 基准情景 | 自主减排情景 | 提前达峰情景 |
---|---|---|---|---|
山西 | 2020 | 0.86 | 0.86 | 0.86 |
2030 | 0.31 | 0.29 | -0.03 | |
2040 | -0.35 | -0.40 | -1.03 | |
2050 | -5.94 | -6.19 | -9.43 | |
内蒙古 | 2020 | 0.15 | 0.15 | 0.15 |
2030 | 0.44 | 0.38 | -0.03 | |
2040 | 0.06 | -0.03 | -0.73 | |
2050 | -1.87 | -2.16 | -4.28 | |
山东 | 2020 | 0.42 | 0.42 | 0.42 |
2030 | 0.20 | 0.28 | -0.03 | |
2040 | -0.16 | -0.04 | -0.49 | |
2050 | -1.02 | -0.81 | -1.58 | |
河南 | 2020 | 0.60 | 0.60 | 0.60 |
2030 | 0.09 | 0.14 | -0.02 | |
2040 | -0.02 | 0.03 | -0.14 | |
2050 | -0.07 | -0.01 | -0.20 | |
陕西 | 2020 | 0.19 | 0.19 | 0.19 |
2030 | 0.23 | 0.20 | -0.03 | |
2040 | -0.38 | -0.43 | -0.83 | |
2050 | -2.13 | -2.24 | -3.15 | |
甘肃 | 2020 | 0.73 | 0.73 | 0.73 |
2030 | 0.36 | 0.30 | -0.03 | |
2040 | -0.06 | -0.17 | -0.72 | |
2050 | -3.32 | -3.77 | -5.97 | |
青海 | 2020 | 0.52 | 0.52 | 0.52 |
2030 | 0.62 | 0.39 | -0.04 | |
2040 | 0.23 | -0.24 | -1.08 | |
2050 | -2.95 | -5.35 | -9.70 | |
宁夏 | 2020 | 0.08 | 0.08 | 0.08 |
2030 | 0.28 | 0.20 | -0.03 | |
2040 | -0.07 | -0.19 | -0.53 | |
2050 | -1.01 | -1.22 | -1.86 | |
总体 | 2020 | 0.56 | 0.56 | 0.56 |
2030 | 0.30 | 0.29 | -0.03 | |
2040 | -0.15 | -0.16 | -0.63 | |
2050 | -1.10 | -1.11 | -1.80 |
Table 4
Peaking time of carbon emissions of relevant provinces in the Yellow River Basin under three scenarios
山西 | 内蒙古 | 山东 | 河南 | 陕西 | 甘肃 | 青海 | 宁夏 | 总体 | |
---|---|---|---|---|---|---|---|---|---|
基准情景/年 | 2035 | 2040 | 2036 | 2037 | 2034 | 2038 | 2042 | 2038 | 2037 |
自主减排情景/年 | 2035 | 2039 | 2039 | 2045 | 2033 | 2035 | 2037 | 2035 | 2036 |
提前达峰情景/年 | 2029 | 2029 | 2029 | 2028 | 2029 | 2028 | 2029 | 2029 | 2029 |
[1] |
Liu Z, Guan D B, Wei W, et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China[J]. Nature, 2015, 524:335-338.
doi: 10.1038/nature14677 |
[2] | 任保平, 李禹墨. 新时代我国高质量发展评判体系的构建及其转型路径[J]. 陕西师范大学学报(哲学社会科学版), 2018, 47(3):104-113. |
[ Ren B P, Li Y M. On the construction of Chinese high-quality development evaluation system and the path of its transformation in the new era[J]. Journal of Shaanxi Normal University (Philosophy and Social Sciences Edition), 2018, 47(3):104-113.] | |
[3] | 习近平. 在黄河流域生态保护和高质量发展座谈会上的讲话[J]. 求是, 2019, (20):1-5. |
[ Xi J P. Speech at a symposium on ecological protection and quality development in the Yellow River Basin[J]. Qiushi, 2019, (20):1-5.] | |
[4] |
Li F F, Xu Z, Ma H. Can China achieve its CO2 emissions peak by 2030?[J]. Ecological Indicators, 2018, 84:337-344.
doi: 10.1016/j.ecolind.2017.08.048 |
[5] |
Fang K, Tang Y Q, Zhang Q F, et al. Will China peak its energy-related carbon emissions by 2030? Lessons from 30 Chinese provinces[J]. Applied Energy, 2019, DOI: 10.1016/j.apenergy.2019.113852.
doi: 10.1016/j.apenergy.2019.113852 |
[6] |
Su Y Q, Liu X, Ji J P, et al. Role of economic structural change in the peaking of China’s CO2 emissions: An input-output optimization model[J]. Science of the Total Environment, 2021, DOI: 10.1016/j.scitotenv.2020.143306.
doi: 10.1016/j.scitotenv.2020.143306 |
[7] |
洪竞科, 李沅潮, 蔡伟光, 等. 多情景视角下的中国碳达峰模拟: 基于RICE-LEAP模型[J]. 资源科学, 2021, 43(4):639-651.
doi: 10.18402/resci.2021.04.01 |
[ Hong J K, Li Y C, Cai W G, et al. Simulating China’s carbon emission peak path under different scenarios based on RICE-LEAP model[J]. Resources Science, 2021, 43(4):639-651.] | |
[8] |
Zeng S, Su B, Zhang M L, et al. Analysis and forecast of China’s energy consumption structure[J]. Energy Policy, 2021, 159:112630.
doi: 10.1016/j.enpol.2021.112630 |
[9] | 王勇, 毕莹, 王恩东. 中国工业碳排放达峰的情景预测与减排潜力评估[J]. 中国人口·资源与环境, 2017, 27(10):131-140. |
[ Wang Y, Bi Y, Wang E D. Scene prediction of carbon emission peak and emission reduction potential estimation in Chinese industry[J]. China Population, Resources and Environment, 2017, 27(10):131-140.] | |
[10] |
朱永彬, 王铮, 庞丽, 等. 基于经济模拟的中国能源消费与碳排放高峰预测[J]. 地理学报, 2009, 64(8):935-944.
doi: 10.11821/xb200908005 |
[ Zhu Y B, Wang Z, Pang L, et al. Simulation on China’s economy and prediction on energy consumption and carbon emission under optimal growth path[J]. Acta Geographica Sinica, 2009, 64(8):935-944.] | |
[11] |
Cui X W, Shao J, Niu X D, et al. An improved forecasting method and application of China’s energy consumption under the carbon peak target[J]. Sustainability, 2021, 13:8670.
doi: 10.3390/su13158670 |
[12] |
Liu Z, Guan D B, Moore S, et al. Climate policy: Steps to China’s carbon peak[J]. Nature, 2015, 524(7565):335-338.
doi: 10.1038/nature14677 |
[13] | 陈志建, 刘月梅, 刘晓, 等. 经济平稳增长下长江经济带碳排放峰值研究: 基于全球夜间灯光数据的视角[J]. 自然资源学报, 2018, 33(12):2213-2222. |
[ Chen Z J, Liu Y M, Liu X, et al. Research on carbon emission peak in Yangtze River Economic Zone with steady economic growth: Based on data of global night-time light[J]. Journal of Natural Resources, 2018, 33(12):2213-2222.] | |
[14] |
黄蕊, 王铮, 丁冠群, 等. 基于STIRPAT模型的江苏省能源消费碳排放影响因素分析及趋势预测[J]. 地理研究, 2016, 35(4):781-789.
doi: 10.11821/dlyj201604015 |
[ Huang R, Wang Z, Ding G Q, et al. Trend prediction and analysis of influencing factors of carbon emissions from energy consumption in Jiangsu Province based on STIRPAT model[J]. Geographical Research, 2016, 35(4):781-789.] | |
[15] | 王勇, 许子易, 张亚新. 中国超大城市碳排放达峰的影响因素及组合情景预测: 基于门限-STIRPAT模型的研究[J]. 环境科学学报, 2019, 39(12):4284-4292. |
[ Wang Y, Xu Z Y, Zhang Y X. Influencing factors and combined scenario prediction of carbon emission peaks in megacities in China: Based on Threshold-STIRPAT Model[J]. Acta Scientiae Circumstantiae, 2019, 39(12):4284-4292.] | |
[16] | 李治国, 王杰. 黄河流域经济集聚的碳强度时空跃迁效应研究[J]. 华东经济管理, 2020, 34(9):61-71. |
[ Li Z G, Wang J. Spatiotemporal transition effects of carbon intensity in the economic accumulation of the Yellow River Basin[J]. East China Economic Management, 2020, 34(9):61-71.] | |
[17] |
Wang W J, Ren L J, Guo Q W, et al. Predicating energy demand and carbon emissions of the Yellow River Delta high-efficiency eco-economic zone[J]. Energy Procedia, 2012, 14:229-234.
doi: 10.1016/j.egypro.2011.12.922 |
[18] |
Li Y, Wei Y G, Zhang X L, et al. Regional and provincial CO2 emission reduction task decomposition of China’s 2030 carbon emission peak based on the efficiency, equity and synthesizing principles[J]. Structural Change and Economic Dynamics, 2020, 53:237-256.
doi: 10.1016/j.strueco.2020.02.007 |
[19] | 任保平, 张倩. 黄河流域高质量发展的战略设计及其支撑体系构建[J]. 改革, 2019, (10):26-34. |
[ Ren B P, Zhang Q. The strategic design and supporting system construction of high-quality development in the Yellow River Basin[J]. Reform, 2019, (10):26-34.] | |
[20] | 刘晓, 王铮, 邓吉祥. 配额目标约束下区域减排的最优控制率[J]. 生态学报, 2016, 36(5):1380-1390. |
[ Liu X, Wang Z, Deng J X. The optimal control rate of regional emission reduction targets under the constraint of quotas[J]. Acta Ecologica Sinica, 2016, 36(5):1380-1390.] | |
[21] | IPCC. 2006年IPCC国家温室气体排放清单指南[M]. 神奈川: 全球环境战略研究所, 2006. |
[IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories[M]. Kanagawa: Institute for Global Environmental Strantegies, 2006.] | |
[22] | 国务院. 国务院关于印发“十三五”控制温室气体排放工作方案的通知[EB/OL]. (2016-10-27) [2020-10-03]. http://www.gov.cn/zhengce/content/2016-11/04/content_5128619.htm. |
[The State Council. Circular of the State Council on the Issuance Of The 13th Five-Year Work Plan for Controlling Greenhouse Gas Emissions[EB/OL]. (2016-10-27) [2020-10-03]. http://www.gov.cn/zhengce/content/2016-11/04/content_5128619.htm.] | |
[23] | 新华社. 强化应对气候变化行动: 中国国家自主贡献[N/OL]. (2015-11-18) [2020-10-04]. http://www.scio.gov.cn/xwfbh/xwbfbh/wqfbh/2015/20151119/xgbd33811/Document/1455864/1455864.htm. |
[Xinhua News Agency. Enhanced Actions on Climate Change: China’s Intended Nationally Determined Contributions[N/OL]. (2015-11-18) [2020-10-04]. http://www.scio.gov.cn/xwfbh/xwbfbh/wqfbh/2015/20151119/xgbd33811/Document/1455864/1455864.htm.] | |
[24] | 中国政府网. 习近平在气候雄心峰会上发表重要讲话[N/OL]. (2020-12-12) [2020-12-15]. http://news.cnr.cn/native/gd/20201212/t20201212_525361086.shtml. |
[Chinese Government Network. Xi Jinping Delivers an Important Speech at the Climate Ambition Summit[N/OL]. (2020-12-12) [2020-12-15]. http://news.cnr.cn/native/gd/20201212/t20201212_525361086.shtml.] | |
[25] | 中国政府网. 习近平在第七十五届联合国大会一般性辩论上发表重要讲话[N/OL]. (2020-09-22) [2020-11-04]. http://www.gov.cn/xinwen/2020-09/22/content_5546168.htm. |
[Chinese Government Network. Xi Jinping Delivers an Important Speech at the General Debate of the 75th Un General Assembly[N/OL]. (2020-09-22) [2020-11-04]. http://www.gov.cn/xinwen/2020-09/22/content_5546168.htm.] | |
[26] | 卢俊宇, 黄贤金, 戴靓, 等. 基于时空尺度的中国省级区域能源消费碳排放公平性分析[J]. 自然资源学报, 2012, 27(12):2006-2017. |
[ Lu J Y, Huang X J, Dai J, et al. Spatio-temporal scale analysis on the equality of energy consumption carbon emission distribution in China[J]. Journal of Natural Resources, 2012, 27(12):2006-2017.] | |
[27] | 王慧慧, 刘恒辰, 何霄嘉, 等. 基于历史累计碳排放视角的碳排放公平性研究[J]. 中国人口·资源与环境, 2016, 26(5):22-25. |
[ Wang H H, Liu H C, He X J, et al. Study of carbon emission equity based on the perspective of historical cumulative carbon emission[J]. China Population, Resources and Environment, 2016, 26(5):22-25.] | |
[28] | 张军, 吴桂英, 张吉鹏. 中国省际物质资本存量估算: 1952-2000[J]. 经济研究, 2004, (10):35-44. |
[ Zhang J, Wu G Y, Zhang J P. The estimation of China’s provincial capital stock: 1952-2000[J]. Economic Research Journal, 2004, (10):35-44.] | |
[29] | 向晶, 蔡翼飞. “十四五”及未来中长期中国劳动力供需趋势及对策分析[J]. 重庆理工大学学报(社会科学), 2020, 34(2):32-44. |
[ Xiang J, Cai Y F. Trends and countermeasures of China’s medium and long term labor supply and demand in the 14th Five-Five-Year Plan and in the future[J]. Journal of Chongqing University of Technology (Social Science), 2020, 34(2):32-44.] | |
[30] | 张玉梅, 乔娟. 都市农业发展与碳排放脱钩关系分析: 基于脱钩理论的Tapio弹性分析法[J]. 经济问题, 2014, (10):81-86. |
[ Zhang Y M, Qiao J. Analysis of urban agriculture development and carbon emissions decoupling relationship based on the theory of decoupling about Tapio Elastic Analysis[J]. On Economic Problems, 2014, (10):81-86.] | |
[31] |
Lin C, Qi J C, Liang S, et al. Saving less in China facilitates global CO2 mitigation[J]. Nature Communications, 2020, 11(1):93-130.
doi: 10.1038/s41467-019-13774-2 |
[32] | 徐成龙, 任建兰, 巩灿娟. 产业结构调整对山东省碳排放的影响[J]. 自然资源学报, 2014, 29(2):201-210. |
[ Xu C L, Ren J L, Gong C J. The influence of adjustment in industrial structures on carbon emissions in Shandong Province[J]. Journal of Natural Resources, 2014, 29(2):201-210.] | |
[33] | 周迪, 周丰年, 郑楚鹏. 公平和效率视角的中国碳排放区域差异及其固化研究[J]. 干旱区地理, 2019, 42(6):1461-1469. |
[ Zhou D, Zhou F N, Zheng C P. Regional differences and its solidification of carbon emission in China: An equity and efficiency perspective[J]. Arid Land Geography, 2019, 42(6):1461-1469.] |
|