Resources Science ›› 2021, Vol. 43 ›› Issue (11): 2316-2330.doi: 10.18402/resci.2021.11.14
Previous Articles Next Articles
DENG Rongrong(), ZHANG Aoxiang(
)
Received:
2021-03-30
Revised:
2021-06-04
Online:
2021-11-25
Published:
2022-01-25
Contact:
ZHANG Aoxiang
DENG Rongrong, ZHANG Aoxiang. The impact of urban digital finance development on carbon emission performance in China and mechanism[J].Resources Science, 2021, 43(11): 2316-2330.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Descriptive statistics of variables
变量类型 | 变量 | 单位 | 样本量 | 均值 | 标准差 | 最小值 | 最大值 |
---|---|---|---|---|---|---|---|
被解释变量 | Ci | t/万元 | 1995 | 6.973 | 4.981 | 0.400 | 39.120 |
Ce | 指数 | 1995 | 0.257 | 0.127 | 0.061 | 1.000 | |
核心解释变量 | Df | 指数 | 1995 | 170.400 | 51.060 | 55.520 | 303.000 |
Bre | 指数 | 1995 | 159.500 | 49.700 | 36.110 | 290.300 | |
Dep | 指数 | 1995 | 167.700 | 57.130 | 27.830 | 325.700 | |
Dig | 指数 | 1995 | 211.300 | 64.260 | 51.520 | 581.200 | |
中介变量 | Rgdp | 万元/人 | 1995 | 5.444 | 5.152 | 0.618 | 55.680 |
Tec | 对数 | 1995 | 6.237 | 1.737 | 0.001 | 11.37 | |
Ins | 指数 | 1995 | 6.510 | 0.348 | 5.517 | 7.614 | |
控制变量 | Pi | 百人/km2 | 1995 | 4.339 | 3.399 | 0.051 | 26.480 |
Reg | % | 1995 | 39.250 | 7.327 | 0.590 | 95.250 | |
Fi | % | 1995 | 16.300 | 1.132 | 13.720 | 20.270 | |
Fdi | % | 1995 | 11.720 | 10.500 | 0.000 | 73.620 | |
Gov | % | 1995 | 19.700 | 13.050 | 4.388 | 234.900 | |
Rs | % | 1995 | 0.267 | 0.584 | 0.002 | 6.085 |
Table 2
Impact of digital finance development on carbon emission performance
变量 | 固定效应回归 | 工具变量回归 | |||
---|---|---|---|---|---|
Ci | Ce | Ci | Ce | ||
Df | -0.0032*** | 0.0004*** | -0.0433*** | 0.0002** | |
(0.0012) | (0.0000) | (0.0076) | (0.0001) | ||
Pi | -0.0281 | -0.0105** | 0.0208 | -0.0018* | |
(0.1021) | (0.0041) | (0.1009) | (0.0011) | ||
Reg | -0.0005 | -0.0001 | -0.0004** | 0.0004** | |
(0.0053) | (0.0002) | (0.0002) | (0.0002) | ||
Jr | -0.4482** | 0.0201*** | -0.0778*** | 0.0584*** | |
(0.1739) | (0.0070) | (0.0253) | (0.0130) | ||
Fdi | -0.0272** | -0.0002 | 0.0007 | 0.0008* | |
(0.0116) | (0.0005) | (0.0006) | (0.0004) | ||
Gov | 0.0206*** | -0.0003* | -0.0001 | -0.0001 | |
(0.0044) | (0.0002) | (0.0002) | (0.0004) | ||
Rs | 0.8213*** | 0.0436*** | 0.0744*** | 0.0683*** | |
(0.2732) | (0.0110) | (0.0131) | (0.0077) | ||
Constant | 14.3676*** | 0.5536*** | -0.9843*** | -0.6889*** | |
(2.7081) | (0.1093) | (0.3859) | (0.3373) | ||
Observations | 1995 | 1995 | 1710 | 1710 | |
R-squared | 0.091 | 0.153 | 0.153 | 0.153 | |
C-D Wald-F | 130.198 | 130.198 |
Table 3
Impact of various dimensions of digital finance on carbon emission performance
变量 | 数字金融覆盖度 | 数字金融使用深度 | 数字化程度 | |||||
---|---|---|---|---|---|---|---|---|
Ci | Ce | Ci | Ce | Ci | Ce | |||
Bre | -0.0050*** | 0.0004*** | ||||||
(0.0013) | (0.0001) | |||||||
Dep | -0.0001 | 0.0004*** | ||||||
(0.0009) | (0.0000) | |||||||
Dig | -0.0020*** | 0.0001*** | ||||||
(0.0007) | (0.0000) | |||||||
Constant | 11.6999*** | 0.3821*** | 20.5174*** | 0.4711*** | 15.9865*** | -0.0242 | ||
(2.7252) | (0.1113) | (2.2836) | (0.0911) | (2.1296) | (0.0877) | |||
控制变量 | 是 | 是 | 是 | 是 | 是 | 是 | ||
固定效应 | 是 | 是 | 是 | 是 | 是 | 是 | ||
Observations | 1995 | 1995 | 1995 | 1995 | 1995 | 1995 | ||
R-squared | 0.095 | 0.137 | 0.087 | 0.169 | 0.091 | 0.120 |
Table 5
Impact of intermediary variables on carbon emission performance
变量 | 经济增长效应 | 产业结构效应 | 技术创新效应 | |||||
---|---|---|---|---|---|---|---|---|
Ci | Ce | Ci | Ce | Ci | Ce | |||
Df | -0.0027*** | 0.0003*** | -0.0064*** | 0.0005*** | 0.0003 | 0.0005*** | ||
(0.0006) | (0.0001) | (0.0013) | (0.0001) | (0.0013) | (0.0001) | |||
Rgdp | -0.0531*** | 0.0022*** | ||||||
(0.0146) | (0.0006) | |||||||
Ins | -1.7816*** | 0.0073 | ||||||
(0.3806) | (0.0155) | |||||||
Tec | -0.4102*** | 0.0096*** | ||||||
(0.0712) | (0.0029) | |||||||
Constant | 0.0299 | -0.1010*** | 4.7539 | 0.5931*** | 14.8028*** | 0.5637*** | ||
(0.8950) | (0.0224) | (3.3857) | (0.1376) | (2.6839) | (0.1091) | |||
控制变量 | 是 | 是 | 是 | 是 | 是 | 是 | ||
固定效应 | 是 | 是 | 是 | 是 | 是 | 是 | ||
Observations | 1710 | 1710 | 1995 | 1995 | 1995 | 1995 | ||
R-squared | 0.102 | 0.153 | 0.108 | 0.158 | ||||
AR(1) | 0.0012 | 0.0211 | ||||||
AR(2) | 0.2013 | 0.2315 | ||||||
Sargan | 0.3984 | 0.4051 |
Table 6
Heterogeneity analysis: carbon emission intensity
变量 | 经济发展水平异质性 | 金融发展水平异质性 | |||||
---|---|---|---|---|---|---|---|
高经济发展水平Ci | 低经济发展水平Ci | 高金融发展水平Ci | 低金融发展水平Ci | ||||
Df | -0.0031* | -0.0115*** | -0.0025*** | -0.0072*** | |||
(0.0019) | (0.0016) | (0.0007) | (0.0028) | ||||
Constant | -8.9681* | 16.6421*** | 3.6607** | 19.8369*** | |||
(5.1019) | (3.1656) | (1.8169) | (5.9704) | ||||
控制变量 | 是 | 是 | 是 | 是 | |||
固定效应 | 是 | 是 | 是 | 是 | |||
Observations | 998 | 997 | 998 | 997 | |||
R-squared | 0.045 | 0.256 | 0.137 | 0.113 |
Table 7
Heterogeneity analysis: carbon emission efficiency
变量 | 经济发展水平异质性 | 金融发展水平异质性 | |||||
---|---|---|---|---|---|---|---|
高经济发展水平Ce | 低经济发展水平Ce | 高金融发展水平Ce | 低金融发展水平Ce | ||||
Df | 0.0006*** | 0.0003*** | 0.0006*** | 0.0003*** | |||
(0.0001) | (0.0000) | (0.0001) | (0.0001) | ||||
Constant | 0.7860*** | 0.3402*** | 0.6405*** | 0.3275*** | |||
(0.2850) | (0.0719) | (0.2342) | (0.1120) | ||||
控制变量 | 是 | 是 | 是 | 是 | |||
固定效应 | 是 | 是 | 是 | 是 | |||
Observations | 998 | 997 | 998 | 997 | |||
R-squared | 0.147 | 0.180 | 0.192 | 0.137 |
Table 8
Results of various robustness tests
变量 | 缩减样本:替换核心解释变量 | 缩减样本:剔除直辖市 | |||
---|---|---|---|---|---|
Ci | Ce | Ci | Ce | ||
De | -0.0101** | 0.0137*** | |||
(0.0051) | (0.0008) | ||||
Df | -0.0033*** | 0.0004*** | |||
(0.0012) | (0.0000) | ||||
Constant | 15.3175*** | -0.2980*** | 14.3709*** | 0.4859*** | |
(2.3751) | (0.1021) | (2.7230) | (0.0956) | ||
控制变量 | 是 | 是 | 是 | 是 | |
固定效应 | 是 | 是 | 是 | 是 | |
Observations | 1140 | 1140 | 1967 | 1967 | |
R-squared | 0.079 | 0.386 | 0.190 | 0.158 |
[1] | 贺茂斌, 杨晓维. 数字普惠金融、碳排放与全要素生产率[J]. 金融论坛, 2021, 26(2):18-25. |
[ He M B, Yang X W. Digital inclusive finance, carbon emissions and total factor productivity[J]. Financial Forum, 2021, 26(2):18-25.] | |
[2] | 陈矜, 许一帆. 数字金融发展降低环境污染了吗?[J]. 辽宁科技大学学报, 2020, 43(5):69-74. |
[ Chen J, Xu Y F. Does the development of digital finance reduce environmental pollution?[J]. Journal of University of Science and Technology Liaoning, 2020, 43(5):69-74.] | |
[3] | 许钊, 高煜, 霍治方. 数字金融的污染减排效应[J]. 财经科学, 2021, (4):28-39. |
[ Xu Z, Gao Y, Huo Z F. Research on pollution effect of digital finance[J]. Finance & Economics, 2021, (4):28-39.] | |
[4] |
Artur T, Chousa J P, Vadlamannati K C. Does higher economic and financial development lead to environmental degradation: Evidence from BRIC countries[J]. Energy Policy, 2009, 37(1):246-253.
doi: 10.1016/j.enpol.2008.08.025 |
[5] |
Ouyang Y F, Li P. On the nexus of financial development, economic growth, and energy consumption in China: New perspective from a GMM panel VAR approach[J]. Energy Economics, 2018, 71(3):238-252.
doi: 10.1016/j.eneco.2018.02.015 |
[6] | 贺俊, 程锐, 刘庭. 金融发展、技术创新与环境污染[J]. 东北大学学报(社会科学版), 2019, 21(2):139-148. |
[ He J, Cheng R, Liu T. Financial development, technological innovation and environmental pollution[J]. Journal of Northeast University (Social Science Edition), 2019, 21(2):139-148.] | |
[7] |
Sadorsky P. The impact of financial development on energy consumption in emerging economies[J]. Energy Policy, 2010, 38(5):2528-2535.
doi: 10.1016/j.enpol.2009.12.048 |
[8] |
Sorrell S, Dimitropoulos J, Sommerville M. Empirical estimates of the direct rebound effect: A review[J]. Energy Policy, 2009, 37(4):1356-1371.
doi: 10.1016/j.enpol.2008.11.026 |
[9] | 邵汉华, 刘耀彬. 金融发展与碳排放的非线性关系研究: 基于面板平滑转换模型的实证检验[J]. 软科学, 2017, 31(5):80-84. |
[ Shao H H, Liu Y B. The nonlinear relationship between financial development and carbon emissions: Based on panel smooth transition regression model[J]. Soft Science, 2017, 31(5):80-84.] | |
[10] | 彭智敏, 向念, 夏克郁. 长江经济带地级城市金融发展与碳排放关系研究[J]. 湖北社会科学, 2018, (11):32-38. |
[ Peng Z M, Xiang N, Xia K Y. Research on the relationship between financial development and carbon emission in prefecture-level cities in the Yangtze River Economic Belt[J]. Hubei Social Sciences, 2018, (11):32-38.] | |
[11] | Grossman G M, Krueger A B. Environmental impacts of a North American free trade agreement[J]. CEPR Discussion Papers, 1992, 8(2):223-250. |
[12] | 严成樑, 李涛, 兰伟. 金融发展、创新与二氧化碳排放[J]. 金融研究, 2016, (1):14-30. |
[ Yan C L, Li T, Lan W. Financial development, innovation and carbon emissions[J]. Journal of Financial Research, 2016, (1):14-30.] | |
[13] | 熊灵, 齐绍洲. 金融发展与中国省区碳排放: 基于STIRPAT模型和动态面板数据分析[J]. 中国地质大学学报(社会科学版), 2016, 16(2):63-73. |
[ Xiong L, Qi S Z. Financial development and carbon emission in China: Based on STIRPAT model and dynamic panel data analysis[J]. Journal of China University of Geosciences (Social Sciences Edition), 2016, 16(2):63-73.] | |
[14] | 陈碧琼, 张梁梁. 动态空间视角下金融发展对碳排放的影响力分析[J]. 软科学, 2014, 28(7):140-144. |
[ Chen B Q, Zhang L L. The impact of financial development on carbon emissions from the perspective of dynamic spatial[J]. Soft Science, 2014, 28(7):140-144.] | |
[15] | 胡宗义, 李毅. 金融发展对环境污染的双重效应与门槛特征[J]. 中国软科学, 2019, (7):68-80. |
[ Hu Z Y, Li Y. Dual effects and threshold characteristics of financial development on environmental pollution[J]. China Soft Science, 2019, (7):68-80.] | |
[16] | 滕磊, 马德功. 数字金融能够促进高质量发展吗?[J]. 统计研究, 2020, 37(11):80-92. |
[ Teng L, Ma D G. Can digital finance help to promote high quality development[J]. Statistical Research, 2020, 37(11):80-92.] | |
[17] | 王永仓, 温涛. 数字金融的经济增长效应及异质性研究[J]. 现代经济探讨, 2020, (11):56-69. |
[ Wang Y C, Wen T. Research on economic growth effect and heterogeneity of digital finance[J]. Modern Economic Research, 2020, (11):56-69.] | |
[18] | 唐松, 伍旭川, 祝佳. 数字金融与企业技术创新: 结构特征、机制识别与金融监管下的效应差异[J]. 管理世界, 2020, 36(5):52-66. |
[ Tang S, Wu X C, Zhu J. Digital finance and enterprise technology innovation: Structural feature, mechanism identification and effect difference under financial supervision[J]. Management World, 2020, 36(5):52-66.] | |
[19] | 杜金岷, 韦施威, 吴文洋. 数字普惠金融促进了产业结构优化吗?[J]. 经济社会体制比较, 2020, (6):38-49. |
[ Du J M, Wei S W, Wu W Y. Does digital financial inclusive promote the optimization of industrial structure?[J]. Comparative Economic & Social Systems, 2020, (6):38-49.] | |
[20] | 许广月, 宋德勇. 中国碳排放环境库兹涅茨曲线的实证研究: 基于省域面板数据[J]. 中国工业经济, 2010, (5):37-47. |
[ Xu G Y, Song D Y. An empirical study of the environmental Kuznets Curve of China’s carbon emission: Based on provincial panel data[J]. China Industrial Economy, 2010, (5):37-47.] | |
[21] | 赫永达, 文红, 孙传旺. “十四五”期间我国碳排放总量及其结构预测: 基于混频数据ADL-MIDAS模型[J]. 经济问题, 2021, (4):31-40. |
[ He Y D, Wen H, Sun C W. Forecasting China’s total carbon emission and its structure in the 14th Five Year Plan: Based on Mixed-frequency ADL-MIDAS model[J]. On Economic Problems, 2021, (4):31-40.] | |
[22] | 王鹏, 谢丽文. 污染治理投资、企业技术创新与污染治理效率[J]. 中国人口·资源与环境, 2014, 24(9):51-58. |
[ Wang P, Xie L W. Pollution control investment, enterprise technological innovation and pollution control efficiency[J]. China Population, Resources and Environment, 2014, 24(9):51-58.] | |
[23] | 陈阳, 逯进, 于平. 技术创新减少环境污染了吗? 来自中国285个城市的经验证据[J]. 西安交通大学学报(社会科学版), 2019, 39(1):73-84. |
[ Chen Y, Lu J, Yu P. Does technology innovation reduce environmental pollution? Empirical research based on 285 Chinese cities[J]. Journal of Xi’an Jiaotong University (Social Sciences), 2019, 39(1):73-84.] | |
[24] | 陈超凡, 蓝庆新, 王泽. 城市创新行为改善生态效率了吗? 基于空间关联与溢出视角的考察[J]. 南方经济, 2021, (1):102-119. |
[ Chen C F, Lan Q X, Wang Z. Does urban innovation improve ecological efficiency? Based on the perspective of spatial correlation and spatial spillover[J]. Southern China Journal of Economics, 2021, (1):102-119.] | |
[25] | 刘玉珂, 金声甜. 中部六省能源消费碳排放时空演变特征及影响因素[J]. 经济地理, 2019, 39(1):182-191. |
[ Liu Y K, Jin S T. Temporal and spatial evolution characteristics and influencing factors of energy consumption carbon emissions in six provinces of central China[J]. Economic Geography, 2019, 39(1):182-191.] | |
[26] | 赵领娣, 张磊, 徐乐, 等. 人力资本、产业结构调整与绿色发展效率的作用机制[J]. 中国人口·资源与环境, 2016, 26(11):106-114. |
[ Zhao L D, Zhang L, Xu L, et al. Mechanism of human capital, industrial structure adjustment and green development efficiency[J]. China Population, Resources and Environment, 2016, 26(11):106-114.] | |
[27] | 钱海章, 陶云清, 曹松威, 等. 中国数字金融发展与经济增长的理论与实证[J]. 数量经济技术经济研究, 2020, 37(6):26-46. |
[ Qian H Z, Tao Y Q, Cao S W, et al. Theoretical and empirical analysis on the development of digital finance and economic growth in China[J]. The Journal of Quantitative & Technical Economics, 2020, 37(6):26-46.] | |
[28] | 温忠麟, 张雷, 侯杰泰, 等. 中介效应检验程序及其应用[J]. 心理学报, 2004, (5):111-117. |
[ Wen Z L, Zhang L, Hou J T, et al. Testing and application of the mediating effects[J]. Acta Psychologica Sinica, 2004, (5):111-117.] | |
[29] | 史丹, 李少林. 排污权交易制度与能源利用效率: 对地级及以上城市的测度与实证[J]. 中国工业经济, 2020, (9):5-23. |
[ Shi D, Li S L. Emissions trading system and energy use efficiency: Measurements and empirical evidence for cities at and above the prefecture level[J]. China Industrial Economics, 2020, (9):5-23.] | |
[30] | 马大来, 陈仲常, 王玲. 中国省际碳排放效率的空间计量[J]. 中国人口·资源与环境, 2015, 25(1):67-77. |
[ Ma D L, Chen Z C, Wang L. Spatial econometrics research on inter-provincial carbon emissions efficiency in China[J]. China Population, Resources and Environment, 2015, 25(1):67-77.] | |
[31] |
王少剑, 高爽, 黄永源, 等. 基于超效率SBM模型的中国城市碳排放强度时空演变格局及预测[J]. 地理学报, 2020, 75(6):1316-1330.
doi: 10.11821/dlxb202006016 |
[ Wang S J, Gao S, Huang Y Y, et al. Spatial-temporal evolution and trend prediction of urban carbon emission performance in China based on super-efficiency SBM model[J]. Acta Geographica Sinica, 2020, 75(6):1316-1330.] | |
[32] |
Chen H X, Zhang X L, Wu R W, et al. Revisiting the environmental Kuznets curve for city-level CO2 emissions: Based on corrected NPP-VIIRS nighttime light data in China[J]. Journal of Cleaner Production, 2020, DOI: 10.1016/j.jclepro.2020.121575.
doi: 10.1016/j.jclepro.2020.121575 |
[33] |
Meng X, Han J, Huang C. An improved vegetation adjusted nighttime light urban index and its application in quantifying spatio-temporal dynamics of carbon emissions in China[J]. Remote Sensing, 2017, DOI: 10.3390/rs9080829.
doi: 10.3390/rs9080829 |
[34] |
Zhang W S, Jiang L, Cui Y Z, et al. Effects of urbanization on airport CO2 emissions: A geographically weighted approach using nighttime light data in China[J]. Resources, Conservation and Recycling, 2019, DOI: 10.1016/j.resconrec.2019.104454.
doi: 10.1016/j.resconrec.2019.104454 |
[35] |
吴健生, 牛妍, 彭建, 等. 基于DMSP/OLS夜间灯光数据的1995-2009年中国地级市能源消费动态[J]. 地理研究, 2014, 33(4):625-634.
doi: 10.11821/dlyj201404003 |
[ Wu J S, Niu Y, Peng J, et al. Research on energy consumption dynamic among prefecture-level cities in China based on DMSP/OLS nighttime light[J]. Geographical Research, 2014, 33(4):625-634.] | |
[36] | 郭峰, 王靖一, 王芳, 等. 测度中国数字普惠金融发展: 指数编制与空间特征[J]. 经济学(季刊), 2020, 19(4):1401-1418. |
[ Guo F, Wang J Y, Wang F, et al. Measuring China’s digital financial inclusion: Index compilation and spatial characteristics[J]. China Economic Quarterly, 2020, 19(4):1401-1418.] | |
[37] | 白俊红, 蒋伏心. 考虑环境因素的区域创新效率研究: 基于三阶段DEA方法[J]. 财贸经济, 2011, (10):104-112. |
[ Bai J H, Jiang F X. Research on regional innovation efficiency considering environmental factors: Based on three-stage DEA method[J]. Finance & Trade Economics, 2011, (10):104-112.] | |
[38] | 付凌晖. 我国产业结构高级化与经济增长关系的实证研究[J]. 统计研究, 2010, 27(8):79-81. |
[ Fu L H. Research on regional innovation efficiency with environment factors: Based on three-stage DEA model[J]. Statistical Research, 2010, 27(8):79-81.] | |
[39] |
王少剑, 黄永源. 中国城市碳排放强度的空间溢出效应及驱动因素[J]. 地理学报, 2019, 74(6):1131-1148.
doi: 10.11821/dlxb201906005 |
[ Wang S J, Huang Y Y. Spatial spillover effect and driving factors of carbon emission intensity at city level in China[J]. Acta Geographica Sinica, 2019, 74(6):1131-1148.] | |
[40] |
周迪, 罗东权. 绿色税收视角下产业结构变迁对中国碳排放的影响[J]. 资源科学, 2021, 43(4):693-709.
doi: 10.18402/resci.2021.04.05 |
[ Zhou D, Luo D Q. Green taxation, industrial structure transformation and carbon emissions reduction[J]. Resources Science, 2021, 43(4):693-709.] | |
[41] | 王霞, 张丽君, 秦耀辰, 等. 中国高碳制造业碳排放时空演变及其驱动因素[J]. 资源科学, 2020, 42(2):323-333. |
[ Wang X, Zhang L J, Qin Y C, et al. Spatiotemporal changes of carbon emissions in high-carbon manufacturing industry in China and driving factors[J]. Resources Science, 2020, 42(2):323-333.] | |
[42] | 邝嫦娥, 路江林. 环境规制对绿色技术创新的影响研究: 来自湖南省的证据[J]. 经济经纬, 2019, 36(2):126-132. |
[ Kuang C E, Lu J L. Research on the influence of environmental regulation on green technology innovation: Evidence from Hunan Province[J]. Economic Survey, 2019, 36(2):126-132.] | |
[43] | 易行健, 周利. 数字普惠金融发展是否显著影响了居民消费? 来自中国家庭的微观证据[J]. 金融研究, 2018, (11):47-67. |
[ Yi X J, Zhou L. Does digital financial inclusion significantly influence household consumption? Evidence from household survey data in China[J]. Financial Research, 2018, (11):47-67.] |
|