Resources Science ›› 2020, Vol. 42 ›› Issue (12): 2419-2433.doi: 10.18402/resci.2020.12.13
Previous Articles Next Articles
JIANG Ruixue1,2(), HAN Dongmei1,2(
), SONG Xianfang1,2, YANG Lihu1, LI Binghua3
Received:
2019-12-31
Revised:
2020-05-26
Online:
2020-12-25
Published:
2021-02-25
Contact:
HAN Dongmei
E-mail:jiangrx.18s@igsnrr.ac.cn;handm@igsnrr.ac.cn
JIANG Ruixue, HAN Dongmei, SONG Xianfang, YANG Lihu, LI Binghua. Impacts of reclaimed water recharge to a river channel on ambient water bodies: A case study of the Chaobai River in Beijing[J].Resources Science, 2020, 42(12): 2419-2433.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Statistics of hydrochemical parameters of reclaimed water, surface water, and shallow groundwater"
pH | TDS /(mg/L) | TH /(mg/L) | K+ /(mg/L) | Na+ /(mg/L) | Ca2+ /(mg/L) | Mg2+ /(mg/L) | Cl- /(mg/L) | SO42- /(mg/L) | HCO3- /(mg/L) | |
---|---|---|---|---|---|---|---|---|---|---|
再生水 | ||||||||||
极小值 | 7.4 | 407.0 | 207.0 | 2.4 | 54.4 | 45.2 | 18.4 | 69.5 | 12.2 | 164.0 |
极大值 | 8.4 | 624.0 | 306.0 | 20.3 | 118.0 | 87.4 | 24.6 | 122.0 | 150.0 | 299.0 |
均值 | 8.0 | 566.2 | 242.8 | 13.5 | 87.6 | 60.7 | 22.0 | 91.7 | 96.9 | 225.0 |
标准差 | 0.2 | 61.0 | 24.3 | 4.2 | 15.5 | 10.5 | 2.0 | 14.4 | 36.8 | 39.1 |
变异系数/% | 3.1 | 10.8 | 10.0 | 30.9 | 17.7 | 17.3 | 9.1 | 15.7 | 37.9 | 17.4 |
地表水 | ||||||||||
极小值 | 7.5 | 235.0 | 95.8 | 1.8 | 22.9 | 14.7 | 10.8 | 27.0 | 45.7 | 73.2 |
极大值 | 9.5 | 639.0 | 287.0 | 20.3 | 125.0 | 84.2 | 29.5 | 113.0 | 171.0 | 336.0 |
均值 | 8.2 | 485.5 | 189.0 | 13.0 | 80.0 | 41.3 | 20.0 | 83.0 | 98.8 | 193.9 |
标准差 | 0.3 | 94.0 | 48.9 | 3.8 | 18.8 | 16.8 | 3.6 | 15.4 | 22.3 | 53.4 |
变异系数/% | 4.0 | 19.4 | 25.9 | 29.6 | 23.5 | 40.5 | 18.0 | 18.5 | 22.5 | 27.6 |
浅层地下水 | ||||||||||
极小值 | 7.1 | 210.0 | 50.9 | 0.8 | 35.1 | 8.5 | 7.9 | 50.2 | 0.1 | 36.8 |
极大值 | 8.8 | 1020.0 | 683.0 | 19.2 | 120.0 | 184.0 | 52.4 | 130.0 | 186.0 | 554.0 |
均值 | 7.9 | 455.2 | 231.5 | 3.7 | 65.2 | 56.0 | 21.7 | 84.5 | 53.7 | 269.7 |
标准差 | 0.4 | 131.3 | 105.6 | 3.4 | 16.9 | 29.5 | 8.8 | 16.0 | 38.3 | 104.4 |
变异系数/% | 4.7 | 28.8 | 45.6 | 92.8 | 25.9 | 52.7 | 40.6 | 19.0 | 71.3 | 38.7 |
Table 2
Quality standards for reclaimed water, surface water, and groundwater"
指标 | 单位 | 工程设计出水水质 | 地表水环境质量标准(GB 3838—2002) | 地下水质量标准(GB/T 14848—2017) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Ⅲ类 | Ⅳ类 | Ⅰ类 | Ⅱ类 | Ⅲ类 | Ⅳ类 | Ⅴ类 | ||||
pH | 无量纲 | 6~9 | 6~9 | 6~9 | 6.5~8.5 | 5.5~6.5,8.5~9 | <5.5,>9 | |||
DO | mg/L | ≥5 | ≥5 | ≥3 | — | — | — | — | — | |
CODMn | mg/L | ≤6 | ≤6 | ≤10 | ≤1 | ≤2 | ≤3 | ≤10 | ≤10 | |
BOD5 | mg/L | ≤4 | ≤4 | ≤6 | — | — | — | — | — | |
TP | mg/L | ≤0.2 | ≤0.2 | ≤0.3 | — | — | — | — | — | |
TN | mg/L | ≤15 | ≤1 | ≤1.5 | — | — | — | — | — | |
TH | mg/L | — | — | — | ≤150 | ≤300 | ≤450 | ≤650 | >650 | |
TDS | mg/L | — | — | — | ≤300 | ≤500 | ≤1000 | ≤2000 | >2000 | |
NO3-N | mg/L | ≤10 | ≤10 | — | ≤2.0 | ≤5.0 | ≤20 | ≤30 | >30 | |
NO2-N | mg/L | — | — | — | ≤0.01 | ≤0.1 | ≤1 | ≤4.8 | >4.8 | |
NH4-N | mg/L | ≤1 | ≤1 | ≤1.5 | ≤0.02 | ≤0.1 | ≤0.5 | ≤1.5 | >1.5 | |
SO42- | mg/L | — | — | — | ≤50 | ≤150 | ≤250 | ≤350 | >350 | |
Cl- | mg/L | — | — | — | ≤50 | ≤150 | ≤250 | ≤350 | >350 | |
Na+ | mg/L | — | — | — | ≤100 | ≤150 | ≤200 | ≤400 | >400 |
Table 3
Initial concentration of chloride ion and monitored data from 2015 to 2017 in shallow groundwater"
G01 | G02 | G03 | G04 | G05 | G06 | G07 | G09 | G10 | G11 | G12 | G13 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2015—2017年监测值/(mg/L) | 极大值 | 73.8 | 79.0 | 100.0 | 130.0 | 120.0 | 114.0 | 94.2 | 108.0 | 108.0 | 86.9 | 110.0 | 94.8 |
极小值 | 50.2 | 63.8 | 59.0 | 73.6 | 94.7 | 76.4 | 76.8 | 85.4 | 84.6 | 72.3 | 67.6 | 74.0 | |
平均值 | 61.8 | 70.2 | 71.0 | 106.6 | 104.5 | 86.4 | 88.2 | 97.6 | 94.4 | 80.7 | 88.5 | 86.6 | |
初始浓度[ | 27.9 | 28.7 | 40.6 | 75.7 | 66.6 | 46.3 | 68.9 | 31.4 | 28.5 | 23.9 | 140.8 | 23.5 |
Table 4
Nitrogen concentrations in part of surface water and shallow groundwater"
NO3-N/ (mg/L) | NO2-N/ (mg/L) | NH4-N/ (mg/L) | ||
---|---|---|---|---|
受水前[ | G06 | 0.50 | 0.013 | 0.80 |
受水后 | S01 | 2.69 | 0.05 | 0.38 |
G04 | 0.03 | 0.003 | 0.07 | |
G05 | 0.03 | 0.004 | 0.17 | |
G06 | 0.34 | 0.02 | 0.23 | |
G07 | 0.05 | 0.005 | 0.35 | |
RW | 11.09 | 0.05 | 0.73 | |
G08 | 3.49 | 0.06 | 0.24 | |
S06 | 1.98 | 0.10 | 0.42 | |
G09 | 0.03 | 0.02 | 2.21 | |
G10 | 0.03 | 0.003 | 1.14 | |
G11 | 0.06 | 0.05 | 1.32 | |
G12 | 0.26 | 0.03 | 0.71 | |
S07 | 1.97 | 0.07 | 0.53 | |
G13 | 0.03 | 0.01 | 1.82 | |
G14 | 0.18 | 0.10 | 0.44 |
[1] |
Angelakis A N, Asano T, Bahri A, et al. Water reuse: From ancient to modern times and the future[J]. Frontiers in Environmental Science, 2018, DOI: 10.3389/fenvs.2018.00026.
doi: 10.3389/fenvs.2016.00012 pmid: 27642585 |
[2] | 付汉良, 刘晓君. 再生水回用公众心理感染现象的验证及影响策略[J]. 资源科学, 2018,40(6):1222-1229. |
[ Fu H L, Liu X J. Verification and influence strategies of residents’ spiritual cognition of recycled water reuse[J]. Resources Science, 2018,40(6):1222-1229.] | |
[3] | 北京市水务局. 北京市水资源公报(2019年度)[R]. 北京: 北京市水资源公报, 2020. |
[ Beijing Water Authority. Beijing Water Resources Bulletin (2019)[R]. Beijing: Beijing Water Resources Bulletin, 2020.] | |
[4] | 北京市水务局. 2019北京市水务统计年鉴[R]. 北京: 北京市水务统计年鉴, 2020. |
[ Beijing Water Authority. Beijing Water Authority. Beijing Water Statistical Yearbook (2019)[R]. Beijing: Beijing Water Authority. Beijing Water Statistical Yearbook, 2020.] | |
[5] | 北京市水务局. 政民互动[EB/OL]. (2020-08-19) [ 2020-12-24]. http://www.beijing.gov.cn/hudong/yonghu/static/swj/zixun/detail.html?searchCode=swj15973957630311214238. |
[ Beijing Water Authority. Q & A Services[EB/OL]. (2020-08-19) [ 2020-12-24] . http://www.beijing.gov.cn/hudong/yonghu/static/swj/zixun/detail.html?searchCode=swj15973957630311214238.] | |
[6] | 王茜, 郇环, 王红瑞, 等. 再生水利用对土壤和地下水的影响研究综述[J]. 南水北调与水利科技, 2018,16(4):104-113. |
[ Wang Q, Huan H, Wang H R, et al. Review about efforts of reclaimed water usage on soil and groundwater[J]. South-to North Water Transfers and Water Science & Technology, 2018,16(4):104-113.] | |
[7] |
Deng S X, Yan X T, Zhu Q Q, et al. The utilization of reclaimed water: Possible risks arising from waterborne contaminants[J]. Environmental Pollution, 2019,254:113020.
doi: 10.1016/j.envpol.2019.113020 pmid: 31421574 |
[8] | 于一雷, 谷洪彪, 张佳佳. 再生水补水后永定河水化学特征及其形成作用[J]. 干旱区资源与环境, 2017,31(8):108-115. |
[ Yu Y L, Gu H B, Zhang J J. Characteristics and governing factors of water chemistry in Yongding River replenished by reclaimed water[J]. Journal of Arid Land Resources and Environment, 2017,31(8):108-115.] | |
[9] | 黄伟伟, 郑兴灿, 廖飞凤, 等. 再生水景观水体富营养化因素的垂直变化特征[J]. 中国给水排水, 2008,24(1):65-68. |
[ Huang W W, Zheng X C, Liao F F, et al. Vertical variation characteristics of eutrophication factors in landscape water body supplemented by reclaimed water[J]. China Water & Waste Water, 2008,24(1):65-68.] | |
[10] | 赵立新, 许志兰, 胡秀琳, 等. 再生水回用于城市景观水体水质变化规律及水华防治措施研究[J]. 北京水务, 2014, (2):11-13. |
[ Zhao L X, Xu Z L, Hu X L, et al. The water quality variation as recharging reclaimed water into landscape water and prevention measures to algal bloom[J]. Beijing Water, 2014, (2):11-13.] | |
[11] | 孟庆义, 吴晓辉, 赵立新, 等. 再生水回用于北京景观水体引起的水质变化及其改善措施[J]. 水资源保护, 2011,27(1):51-54. |
[ Meng Q Y, Wu X H, Zhao L X, et al. Water quality variations and improvement measures of reclaimed water reuse in scenic water in Beijing[J]. Water Resources Protection, 2011,27(1):51-54.] | |
[12] | Yang L, He J T, Liu Y M, et al. Characteristics of change in water quality along reclaimed water intake area of the Chaobai River in Beijing, China[J]. Journal of Environmental Sciences, 2016,50(12):93-102. |
[13] | Gilabert-Alarcón C, Daesslé L W, Salgado-Méndez S O, et al. Effects of reclaimed water discharge in the Maneadero coastal aquifer, Baja California, Mexico[J]. Applied Geochemistry, 2018,92:121-139. |
[14] | 郑跃军, 李文鹏, 王瑞久, 等. 潮白河冲洪积扇地下水循环演化特征[J]. 人民长江, 2012,43(15):43-46. |
[ Zheng Y J, Li W P, Wang R J, et al. Groundwater circulation and evolution characteristics in alluvial fan area of Chaobai River[J]. Yangtze River, 2012,43(15):43-46.] | |
[15] | Yu Y L, Song X F, Zhang Y H, et al. Identification of key factors governing chemistry in groundwater near the water course recharged by reclaimed water at Miyun County, Northern China[J]. Journal of Environmental Sciences, 2013,25(9):1754-1763. |
[16] | Yu Y L, Song X F, Zhang Y H, et al. Impact of reclaimed water in the watercourse of Huai River on groundwater from Chaobai River Basin, Northern China[J]. Frontiers of Earth Science, 2017,11:643-659. |
[17] | 刘立才, 单悦, 黄俊雄, 等. 河道再生水入渗的水岩相互作用机理研究[J]. 水资源保护, 2018,34(1):31-35. |
[ Liu L C, Shan Y, Huang J X, et al. Interaction mechanism experiment of water and rocks in infiltration of reclaimed water[J]. Water Resources Protection, 2018,34(1):31-35.] | |
[18] | 宋献方, 李发东, 于静洁, 等. 基于氢氧同位素与水化学的潮白河流域地下水水循环特征[J]. 地理研究, 2007, (1):11-21. |
[ Song X F, Li F D, Yu J J, et al. Characteristics of groundwater cycle using deuterium, oxygen-18 and hydrochemistry in Chaobai River Basin[J]. Geographical Research, 2007, (1):11-21.] | |
[19] | Zheng F D, Liu L C, Li B H, et al. Effects of reclaimed water use for scenic water on groundwater environment in a multilayered aquifer system beneath the Chaobai River, Beijing, China: Case study[J]. Journal of Hydrologic Engineering, 2015,20(3):B5014003. |
[20] | 北京市水科学技术研究院. 引温济潮工程受水区地表地下水环境监测评价(2017年度)[R]. 北京: 引温济潮工程受水区地表地下水环境监测评价, 2017. |
[ Beijing Water Science and Technology Institution. Environmental Monitoring and Assessment of Surface Water and Groundwater in the Water Receiving Area of the “Yin Wen Ji Chao” Project (2017)[R]. Beijing: Environmental Monitoring and Assessment of Surface Water and Groundwater in the Water Receiving Area of the “Yin Wen Ji Chao” Project, 2017.] | |
[21] | 国家气象科学数据中心. 北京地面气候资料月值数据集[DB/OL]. (2019-04) [2019- 12- 31]. http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_MON.html. |
[ China Meteorological Administration Data Center. Monthly Data Set of Surface Climatological Data for Beijing[DB/OL]. (2019-04) [2019- 12- 31]. http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_MON.html.] | |
[22] | 国家环境保护总局. 水和废水监测分析方法[M]. 北京: 中国环境科学出版社, 2009. |
[ State Environmental Protection Administration. Monitoring and Analysis Method of Water and Waste Water[M]. Beijing: Chinese Environment Science Press, 2009.] | |
[23] | Piper A. A graphic procedure in the geochemical interpretation of water-analyses[J]. Eos Transactions American Geophysical Union, 1944,25:914-923. |
[24] | 北京市生态环境局. 潮白河水系[EB/OL]. (2009-11-01) [2019-12-31]. http://sthjj.beijing.gov.cn/bjhrb/index/xxgk69/sthjlyzwg/1718880/1718884/hjgnqh/307587/index.html. |
[ Beijing Municipal Ecology and Environment Bureau. Chaobai River[EB/OL]. (2009-11-01) [2019-12-31]. http://sthjj.beijing.gov.cn/bjhrb/index/xxgk69/sthjlyzwg/1718880/1718884/hjgnqh/307587/index.html.] | |
[25] | Prins H B A, Elzenga J T M. Bicarbonate utilization: Function and mechanism[J]. Aquatic Botany, 1989,34(1):59-83. |
[26] | 何宝南, 何江涛, 王健, 等. 顺义潮白河再生水受水区反硝化作用初探[J]. 农业环境科学学报, 2016,35(8):1565-1572. |
[ He B N, He J T, Wang J, et al. Preliminary investigation on the denitrification of reclaimed water intake area of the Chaobai River[J]. Journal of Agro-Environment Science, 2016,35(8):1565-1572.] | |
[27] | Tesoriero A J, Liebscher H, Cox S E. Mechanism and rate of denitrification in an agricultural watershed: Electron and mass balance along groundwater flow paths[J]. Water Resources Research, 2000,36(6):1545-1559. |
[28] | 马培, 李新艳, 王华新, 等. 河流反硝化过程及其在河流氮循环与氮去除中的作用[J]. 农业环境科学学报, 2014,33(4):623-633. |
[ Ma P, Li X Y, Wang H X, et al. Denitrification and its role in cycling and removal of nitrogen in river[J]. Journal of Agro-Environment Science, 2014,33(4):623-633.] | |
[29] | 沈晓强, 彭雪媛, 孔祥雨. 潮白河再生水利用河道沿程水质变化特征[J]. 北京水务, 2018, (1):21-23. |
[ Sheng X Q, Peng X Y, Kong X Y. Characteristics of water quality variation along Chaobai River[J]. Beijing Water, 2018, (1):21-23.] | |
[30] | Li C Z, Li B H, Bi E P. Characteristics of hydrochemistry and nitrogen behavior under long-term managed aquifer recharge with reclaimed water: A case study in North China[J]. Science of The Total Environment, 2019,668:1030-1037. |
[31] |
Trauth N, Musolff A, Knöller K, et al. River water infiltration enhances denitrification efficiency in riparian groundwater[J]. Water Research, 2018,130:185-199.
doi: 10.1016/j.watres.2017.11.058 pmid: 29223089 |
[32] |
Rivett M O, Buss S R, Morgan P, et al. Nitrate attenuation in groundwater: A review of biogeochemical controlling processes[J]. Water Research, 2008,42(16):4215-4232.
doi: 10.1016/j.watres.2008.07.020 pmid: 18721996 |
[33] |
Hill A R. Groundwater nitrate removal in riparian buffer zones: A review of research progress in the past 20 years[J]. Biogeochemistry, 2019,143(4):347-369.
doi: 10.1007/s10533-019-00566-5 |
[34] | Silver M, Knöller K, Schlögl J, et al. Nitrogen cycling and origin of ammonium during infiltration of treated wastewater for managed aquifer recharge[J]. Applied geochemistry, 2018,97:71-80. |
[35] | 许谦. 再生水入渗回补过程中渗流带堵塞作用研究: 以潮白河受水段为例[D]. 北京: 中国地质大学, 2018. |
[ Xu Q. The Study of the Effect of Clogging in the Seepage Zone in the Infiltration Process of Groundwater Recharge with Reused Water: Based on the Intake Area of Chaobaihe River[D]. Beijing: China University of Geosciences, 2018.] | |
[36] | 郑凡东. 再生水作为河湖景观用水的地下水环境效应研究[D]. 北京: 中国地质大学, 2012. |
[ Zheng F D. Case Study on Effects of Reclaimed Water Use for Scenic Water on Groundwater Environment in Chaobai River[D]. Beijing: China University of Geosciences, 2012.] | |
[37] | 陈英硕. 再生水补水的潮白河水环境特征及变化趋势研究[D]. 北京: 中国地质大学, 2015. |
[ Chen Y S. Study on Water Environment Characteristics and Variation Trends of Reclaimed Water Recharged Chaobai River[D]. Beijing: China University of Geosciences, 2015.] | |
[38] | 王健, 何江涛, 刘玉梅, 等. 潮白河再生水受水区水质变化特征多元统计分析[J]. 环境科学与技术, 2014,37(6):171-176. |
[ Wang J, He J T, Liu Y M, et al. Multivariate statistical analysis for characteristics of reclaimed water quality in reception basin of Chaobai River[J]. Environmental Science & Technology, 2014,37(6):171-176] | |
[39] |
Xu H C, Lin H, Jiang H L, et al. Dynamic molecular size transformation of aquatic colloidal organic matter as a function of pH and cations[J]. Water Research, 2018,144:543-552.
doi: 10.1016/j.watres.2018.07.075 pmid: 30077913 |
[40] | Hofmann A F, Middelburg J J, Soetaert K, et al. Proton cycling, buffering, and reaction stoichiometry in natural waters[J]. Marine Chemistry, 2010,121(1):246-255. |
[41] | 吴晓辉, 许志兰, 赵立新, 等. 再生水补水的潮白河顺义段水体中内分泌干扰物的时空分布特征[J]. 安全与环境学报, 2014,14(3):308-312. |
[ Wu X H, Xu Z L, Zhao L X, et al. On the temporal and spatial distributions of endocrine disrupting chemicals (EDCs) in Shunyi section of Chaobai River replenished with the reclaimed water[J]. Journal of Safety and Environment, 2014,14(3):308-312.] | |
[42] | Zhang N, Liu X, Liu R, et al. Influence of reclaimed water discharge on the dissemination and relationships of sulfonamide, sulfonamide resistance genes along the Chaobai River, Beijing[J]. Frontiers of Environmental Science & Engineering, 2019,13(1):85-96 |
[43] |
Ribeiro E, Ladeira C, Viegas S. EDCs mixtures: A stealthy hazard for human health?[J]. Toxics, 2017, DOI: 10.3390/toxics5010005.
doi: 10.3390/toxics8040116 pmid: 33316920 |
[44] |
Hallgren P, Nicolle A, Hansson L A, et al. Synthetic estrogen directly affects fish biomass and may indirectly disrupt aquatic food webs[J]. Environmental Toxicology and Chemistry, 2014,33(4):930-936.
doi: 10.1002/etc.2528 pmid: 24615795 |
[45] | 于一雷. 河道景观再生水对地下水影响研究: 以潮白河北京段为例[D]. 北京: 中国科学院大学, 2013. |
[ Yu Y L. A Research of the Impact of Reclaimed Water as Scenic Water on the Groundwater in Water Channel: A Case Study of Beijing Segment of Chaobai River[D]. Beijing: University of Chinese Academy of Sciences, 2013.] | |
[46] | 吴苗苗. 再生水回灌过程中典型磺胺类抗生素的行为特性研究[D]. 北京: 清华大学, 2015. |
[ Wu M M. The Behavior of Typical Sulfonamides in Soil by Groundwater Recharge with Reclaimed Water[D]. Beijing: Tsinghua University, 2015.] | |
[47] | Li J Z, Fu J, Zhang H L, et al. Spatial and seasonal variations of occurrences and concentrations of endocrine disrupting chemicals in unconfined and confined aquifers recharged by reclaimed water: A field study along the Chaobai River, Beijing[J]. Science of the Total Environment, 2013,450:162-168. |
[48] |
Wang P J, Rene E R, Yan Y L, et al. Spatiotemporal evolvement and factors influencing natural and synthetic EDCs and the microbial community at different groundwater depths in the Chaobai watershed: A long-term field study on a river receiving reclaimed water[J]. Journal of Environmental Management, 2019,246:647-657.
pmid: 31212218 |
|