Resources Science ›› 2020, Vol. 42 ›› Issue (12): 2328-2340.doi: 10.18402/resci.2020.12.06
Previous Articles Next Articles
Received:
2019-12-17
Revised:
2020-04-15
Online:
2020-12-25
Published:
2021-02-25
Contact:
XU Jianhua
E-mail:shawliu@pku.edu.cn;jianhua.xu@pku.edu.cn
LIU Xiao, XU Jianhua. Public willingness to pay for cleaner power sources[J].Resources Science, 2020, 42(12): 2328-2340.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 2
Location, air quality and samples size of the surveyed cities"
城市 | 区域 | 污染天数 | 波动情况 | 空气质量分类 | 设定样本量 | 有效样本量 |
---|---|---|---|---|---|---|
北京 | 华北 | 106(14th) | 71(6th) | 高污染,波动大 | 100 | 105 |
乌鲁木齐 | 西北 | 72(33rd) | 59(17th) | 高污染,波动大 | 100 | 102 |
哈尔滨 | 东北 | 67(41st) | 73(4th) | 高污染,波动大 | 100 | 106 |
西安 | 西北 | 44(72nd) | 38(78th) | 中等污染,波动较大 | 100 | 92 |
成都 | 西南 | 43(78th) | 39(72nd) | 中等污染,波动较大 | 100 | 102 |
上海 | 华东 | 38(94th) | 34(113rd) | 中等污染,波动较小 | 100 | 105 |
重庆 | 西南 | 35(103rd) | 34(117th) | 中等污染,波动较小 | 100 | 95 |
银川 | 西北 | 25(139th) | 31(136th) | 轻污染,波动小 | 100 | 96 |
兰州 | 西北 | 12(180th) | 21(205th) | 轻污染,波动小 | 100 | 107 |
广州 | 华南 | 7(199th) | 20(217th) | 轻污染,波动小 | 100 | 98 |
总计 | — | — | — | — | 1000 | 1008 |
Table 3
Impact of the attributes of power sources and individual characteristics on the preference of the respondents"
模型1 | 模型2 | 模型3 | 模型4 | 模型5 | 模型6 | |
---|---|---|---|---|---|---|
水电 | -0.123 | -0.156** | -0.135* | -0.151** | -0.150 | -0.070 |
可再生能源电力 | 0.030 | -0.000 | 0.010 | 0.003 | 0.022 | 0.017 |
均衡电力 | -0.321*** | -0.350*** | -0.337*** | -0.347*** | -0.368*** | -0.303*** |
核电 | -0.088 | -0.138* | -0.099 | -0.105 | -0.150 | -0.005 |
电价 | -3.668*** | -6.270*** | -4.645*** | -4.154*** | -7.597*** | -4.065* |
SO2 | -4.148*** | -4.632*** | -2.920*** | -3.613*** | -2.263*** | -2.784*** |
CO2 | -3.541*** | -2.941*** | -2.025*** | -3.195*** | -1.455* | -3.931*** |
电价-居住地 | — | -1.404** | — | — | — | — |
电价-收入 | — | 0.232** | — | — | — | — |
CO2-居住地 | — | 0.094 | — | — | — | — |
CO2-收入 | — | -0.063 | — | — | — | — |
SO2-居住地 | — | 0.384* | — | — | — | — |
SO2-收入 | — | -0.057 | — | — | — | — |
电价-年龄 | — | 0.002 | — | — | — | — |
CO2-年龄 | — | -0.018** | — | — | — | — |
SO2-年龄 | — | 0.001 | — | — | — | — |
电价-学历 | — | 0.527** | — | — | — | — |
CO2-学历 | — | 0.070 | — | — | — | — |
SO2-学历 | — | 0.067 | — | — | — | — |
电价-气候变化重视度 | — | — | 0.096 | — | — | — |
CO2-气候变化重视度 | — | — | -0.390*** | — | — | — |
SO2-气候变化重视度 | — | — | -0.127 | — | — | — |
电价-大气污染重视度 | — | — | 0.161 | — | — | — |
CO2-大气污染重视度 | — | — | 0.045 | — | — | — |
SO2-大气污染重视度 | — | — | -0.159 | — | — | — |
电价-是否患哮喘 | — | — | — | 0.647 | — | — |
CO2-是否患哮喘 | — | — | — | 0.038 | — | — |
SO2-是否患哮喘 | — | — | — | -0.641 | — | — |
电价-是否戴口罩 | — | — | — | 0.610** | — | — |
CO2-是否戴口罩 | — | — | — | -0.138 | — | — |
SO2-是否戴口罩 | — | — | — | 0.092 | — | — |
电价-查AQI频率 | — | — | — | -0.441*** | — | — |
CO2-查AQI频率 | — | — | — | -0.004 | — | — |
SO2-查AQI频率 | — | — | — | -0.009 | — | |
电价-感知空气改善 | — | — | — | — | 0.239 | 0.161 |
CO2-感知空气改善 | — | — | — | — | -0.144 | 0.141 |
SO2-感知空气改善 | — | — | — | — | -0.008 | 0.155 |
电价-发展可再生能源政策支持度 | — | — | — | — | 0.361 | — |
CO2-发展可再生能源政策支持度 | — | — | — | — | -0.290 | — |
SO2-发展可再生能源政策支持度 | — | — | — | — | -0.316* | — |
模型1 | 模型2 | 模型3 | 模型4 | 模型5 | 模型6 | |
电价-对政府信任度 | — | — | — | — | 0.426 | 0.606 |
CO2-对政府信任度 | — | — | — | — | -0.126 | 0.000 |
SO2-对政府信任度 | — | — | — | — | -0.116 | -0.085 |
电价-碳减排支持度 | — | — | — | — | — | -0.501 |
CO2-碳减排支持度 | — | — | — | — | — | -0.005 |
SO2-碳减排支持度 | — | — | — | — | — | -0.354* |
标准差 | — | — | — | — | — | — |
电价 | 3.228*** | 2.859*** | 2.997*** | 3.132*** | -2.997*** | -3.407*** |
SO2 | 2.088*** | 1.995*** | 1.969*** | 2.066*** | 1.849*** | 2.004*** |
CO2 | 1.861*** | 1.796*** | 1.694*** | 1.814*** | 1.604*** | 1.923*** |
样本量 | 32256 | 31424 | 32224 | 31968 | 16384 | 15680 |
Table 4
Economic, geographical, and environmental characteristics of the surveyed cities"
地区 | 2016年GDP/亿元 | 经度/° | 纬度/° | 环境质量 综合指数 |
---|---|---|---|---|
北京 | 25669.13 | 116.40 | 39.90 | 6.75 |
哈尔滨 | 6101.61 | 126.53 | 45.80 | 6.28 |
上海 | 28178.65 | 121.47 | 31.23 | 4.66 |
广州 | 19547.44 | 113.27 | 23.13 | 4.81 |
重庆 | 17740.59 | 106.55 | 29.57 | 5.28 |
成都 | 12170.23 | 104.07 | 30.67 | 6.37 |
西安 | 6257.18 | 108.93 | 34.27 | 8.24 |
兰州 | 2264.23 | 103.82 | 36.07 | 6.48 |
银川 | 1617.71 | 106.28 | 38.47 | 7.00 |
乌鲁木齐 | 2458.98 | 87.62 | 43.82 | 7.56 |
Table 5
Fitting degree of different number of groups by city cluster"
城市 | 分组数 | 对数似然 函数 | 一致赤池 信息量 | 贝叶斯 信息量 |
---|---|---|---|---|
北京、哈尔滨 | 2 | -398.781 | 969.062 | 942.062 |
3 | -375.909 | 1037.651 | 992.651 | |
上海、广州、成都、重庆 | 2 | -824.155 | 1837.080 | 1810.080 |
3 | -799.630 | 1913.876 | 1868.876 | |
4 | -768.412 | 1977.287 | 1914.287 | |
西安、银川、兰州、乌鲁木齐 | 2 | -449.214 | 1068.884 | 1041.884 |
3 | -424.812 | 1133.719 | 1088.719 |
Table 6
Preference on power sources of the public and individual characteristics in different city clusters"
变量 | Ⅰ类地区 | Ⅱ类地区 | Ⅲ类地区 | |||||
---|---|---|---|---|---|---|---|---|
1组 | 2组 | 1组 | 2组 | 1组 | 2组 | |||
属性变量 | ||||||||
电价 | -4.114*** | -2.256*** | -1.214*** | -6.668*** | -5.761*** | -3.715*** | ||
CO2 | -3.813*** | -3.738*** | -6.537*** | -1.467** | -6.835*** | -2.626*** | ||
SO2 | -2.422*** | -7.240*** | -6.846*** | -4.299*** | -5.601*** | -3.305*** | ||
水电 | -0.389 | -0.0781 | 0.173 | -0.433 | 0.140 | -0.272 | ||
可再生能源电力 | -0.319 | 0.864** | 0.148 | -0.088 | 0.173 | -0.513** | ||
均衡电力 | -0.839*** | 0.546 | 0.166 | -1.028*** | 0.759* | -0.665*** | ||
核电 | -0.273 | 0.388 | 0.300 | -0.525* | 0.230 | -0.454 | ||
个人特征向量 | ||||||||
收入 | -0.514 | 0 | 0.213 | 0 | 0.893** | 0 | ||
居住地 | -14.830 | 0 | 0.464 | 0 | 0.270 | 0 | ||
年龄 | -0.103* | 0 | -0.007 | 0 | 0.067 | 0 | ||
学历 | -0.017 | 0 | -0.400 | 0 | 0.505 | 0 | ||
气候变化重视度 | -0.193 | 0 | -0.091 | 0 | 2.168* | 0 | ||
大气污染重视度 | -0.207 | 0 | 0.119 | 0 | 1.361** | 0 | ||
检查AQI频率 | 1.185** | 0 | -0.262 | 0 | 0.674 | 0 | ||
发展可再生能源政策支持度 | -2.708** | 0 | 0.910** | 0 | -1.814** | 0 | ||
常数项 | 28.290 | 0 | -1.908 | 0 | -17.260 | 0 | ||
各组占比 | 0.426 | 0.574 | 0.724 | 0.276 | 0.536 | 0.464 |
Table 7
Summary of public preference for power sources and individual characteristics by city cluster"
变量 | Ⅰ类地区 | Ⅱ类地区 | Ⅲ类地区 | ||||
---|---|---|---|---|---|---|---|
1组 | 2组 | 1组 | 2组 | 1组 | 2组 | ||
属性 变量 | 电价 | 低电价 | 低电价 | 低电价 | 低电价 | 低电价 | 低电价 |
CO2 | 减排 | 减排 | 减排 | 减排 | 减排 | 减排 | |
SO2 | 减排 | 减排 | 减排 | 减排 | 减排 | 减排 | |
可再生能源电力 | — | 偏好 | — | — | — | 反对 | |
均衡电力 | 反对 | — | — | 反对 | — | — | |
核电 | — | — | — | 反对 | — | — | |
个人 特征 变量 | 收入 | — | — | — | — | 较高 | 较低 |
年龄 | 较小 | 较大 | — | — | — | — | |
气候变化重视度 | — | — | — | — | 重要 | 不重要 | |
大气污染重视度 | — | — | — | — | 重要 | 不重要 | |
检查AQI频率 | 频率低 | 频率高 | — | — | — | — | |
发展可再生能源政策支持度 | 较不支持 | 较支持 | 较支持 | 较不支持 | 较不支持 | 较支持 |
Table 8
Comparison of willingness to pay to reduce carbon dioxide or sulfur dioxide emissions by 30% between groups of people with different place of residence, age, awareness of climate change, and degree of support for renewable energy policies"
个人特征变量的 | 居住地 | 年龄 | 对气候变化的重视度 | 发展可再生能源政策支持度 | ||||
---|---|---|---|---|---|---|---|---|
异质性 | 城市 | 乡村 | 25~30 | 60~68 | 不重要 | 很重要 | 反对或中立 | 支持 |
CO2 | +18% | +16% | +22% | +15% | ||||
SO2 | +15% | +14% | +30% | +24% |
[1] | 国家发改委, 国家能源局. 能源发展“十三五”规划[R]. 北京: 国家发改委, 2016. |
[ National Development and Reform Commission, National Energy Administration. The 13th Five-year Plan for Energy Development[R]. Beijing: National Development and Reform Commission, 2016.] | |
[2] | 中国电力企业联合会. 电力工业统计资料汇编2018[R]. 北京: 中国电力企业联合会, 2018. |
[ China Electric Power Enterprise Federation. Statistical Collection of Electric Power Industry 2018[R]. Beijing: China Electric Power Enterprise Federation, 2018.] | |
[3] | 中国电力企业联合会. 中国电力行业年度发展报告2018[R]. 北京: 中国电力企业联合会, 2018. |
[ China Electric Power Enterprise Federation. China Power Industry Annual Development Report 2018[R]. Beijing: China Electric Power Enterprise Federation, 2018.] | |
[4] | 国家发改委. 关于调整可再生能源电价附加标准与环保电价有关事项的通知[EB/OL]. (2013-08-27) [2019-12-17]. http://www.nea.gov.cn/2014-09/29/c_133682226.htm. |
[ National Development and Reform Commission. Notice on Matters Related to the Adjustment of Additional Standards for Renewable Energy Electricity Prices and Environmental Protection Electricity Prices[EB/OL]. (2013-08-27) [2019-12-17]. http://www.nea.gov.cn/2014-09/29/c_133682226.htm.] | |
[5] | 严良, 熊伟伟, 王小林, 等. 供需错配下能源替代路径优化[J]. 资源科学, 2019,41(9):1655-1664. |
[ Yan L, Xiong W W, Wang X L, et al. Energy substitution path optimization under supply and demand mismatch[J]. Resources Science, 2019,41(9):1655-1664.] | |
[6] | 国家发改委, 能源研究所, 国网能源研究院. 可再生能源电价改革方向分析[R]. 北京: 国家发改委, 2017. |
[ National Development and Reform Commission, Energy Research Institute, State Grid Energy Research Institute. Analysis of the Direction of Renewable Energy Price Reform[R]. Beijing: National Development and Reform Commission, 2017.] | |
[7] | 王山. 火力发电补贴[EB/OL]. (2017-07-04) [2019-12-17]. http://news.bjx.com.cn/html/20170704/834878-2.shtml. |
[ Wang S. Thermal Power Subsidies[EB/OL]. (2017-07-04) [2019-12-17]. http://news.bjx.com.cn/html/20170704/834878-2.shtml.] | |
[8] | 国务院. 关于进一步深化电力体制改革的若干意见[R]. 北京: 国务院, 2015. |
[ State Council. Several Opinions on Further Deepening the Reform of the Power System[R]. Beijing: State Council, 2015.] | |
[9] | Chen D D, Cheng C Y, Urpelainen J. Support for renewable energy in China: A survey experiment with internet users[J]. Journal of Cleaner Production, 2016,112(5):3750-3758. |
[10] | Bergmann A, Colombo S, Hanley N. Rural versus urban preferences for renewable energy developments[J]. Ecological Economics, 2008,65(3):616-625. |
[11] | Ediger V S, Kirkil G, Çelebi E, et al. Turkish public preferences for energy[J]. Energy Policy, 2018,120(3):492-502. |
[12] | Firestone J, Kirk H. A strong relative preference for wind turbines in the United States among those who live near them[J]. Nature Energy, 2019,4(4):311-320. |
[13] | Greenberg M R. Energy sources, public policy, and public preferences: Analysis of US national and site-specific data[J]. Energy Policy, 2009,37(8):3242-3249. |
[14] | Sergi B, Azevedo I, Xia T, et al. Support for emissions reductions based on immediate and long-term pollution exposure in China[J]. Ecological Economics, 2019,158:26-23. |
[15] | Hess S, Stathopoulos A, Daly A. Allowing for heterogeneous decision rules in discrete choice models: An approach and four case studies[J]. Transportation, 2011,39(3):565-591. |
[16] | Achtnicht M, Madlener R. Factors influencing German house owners’ preferences on energy retrofits[J]. SSRN Electronic Journal, 2012, DOI: 10.2139/ssrn.2100425. |
[17] | Ziegler A. Individual characteristics and stated preferences for alternative energy sources and propulsion technologies in vehicles: A discrete choice analysis for Germany[J]. Transportation Research Part A Policy and Practice, 2012,46(8):1372-1385. |
[18] | 杨欣, Michael B, 张安录. 基于潜在分类模型的农田生态补偿标准测算: 一个离散选择实验模型的实证[J]. 中国人口·资源与环境, 2016,26(7):27-36. |
[ Yang X, Michael B, Zhang A L. Estimation of farmland eco-compensation criteria based on latent class model: A case of a discrete choice experiment[J]. China Population, Resources and Environment, 2016,26(7):27-36.] | |
[19] |
Qian L X, Grisolia J M, Soopramanien D. The impact of service and government-policy attributes on consumer preferences for electric vehicles in China[J]. Transportation Research Part A Policy and Practice, 2019,122:70-84.
doi: 10.1016/j.tra.2019.02.008 |
[20] |
Orlov A, Kallbekken S. The impact of consumer attitudes towards energy efficiency on car choice: Survey results from Norway[J]. Journal of Cleaner Production, 2019,214:816-822.
doi: 10.1016/j.jclepro.2018.12.326 |
[21] |
Achtnicht M. Do environmental benefits matter? Evidence from a choice experiment among house owners in Germany[J]. Ecological Economics, 2011,70(11):2191-2200.
doi: 10.1016/j.ecolecon.2011.06.026 |
[22] | Hammitt J K, Herrera-Araujo D. Peeling back the onion: Using latent class analysis to uncover heterogeneous responses to stated preference surveys[J]. Journal of Environmental Economics and Management, 2018,87:165-189. |
[23] |
Hanley N, Mourato S, Wright R E. Choice modelling approaches: A superior alternative for environmental valuation[J]. Journal of Economic Surveys, 2001,15(3):435-462.
doi: 10.1111/1467-6419.00145 |
[24] | Hoyos D. The state of the art of environmental valuation with discrete choice experiments[J]. Ecological Economics, 2010,69(8):1595-1603. |
[25] | Mcfadden D, Train K. Mixed MNL models for discrete responses[J]. Journal of Applied Economics, 2000,15(5):447-470. |
[26] | Mannering F L, Shankar V, Bhat C R. Unobserved heterogeneity and the statistical analysis of highway accident data[J]. Analytic Methods in Accident Research, 2016,11:1-16. |
[27] | Ferguson M, Mohamed M, Higgins C. How open are Canadian households to electric vehicles? A national latent class choice analysis with willingness-to-pay and metropolitan characterization[J]. Transportation Research Part D: Transport and Environment, 2018,58:208-224. |
[28] | 国务院. 能源发展战略行动计划(2014-2020年) [R]. 北京: 国务院, 2014. |
[ State Council. Strategic Action Plan for Energy Development (2014-2020)[R]. Beijing: State Council, 2014.] | |
[29] | 国家发改委. 国家应对气候变化规划(2014-2020年) [R]. 北京: 国家发改委, 2014. |
[ National Development and Reform Commission. National Climate Change Plan (2014-2020)[R]. Beijing: National Development and Reform Commission, 2014.] | |
[30] | Louviere J J, Hensher D A. Design and analysis of simulated or allocation experiments in travel choice modelling[J]. Transportation Research Record, 1982,890:11-17. |
[31] |
Louviere J J, Woodworth G. Design and analysis of simulated consumer choice or allocation experiments: An approach based on aggregate data[J]. Journal of Marketing Research, 1983,20:350-367.
doi: 10.1177/002224378302000403 |
[32] |
Lancaster K J. A new approach to consumer theory[J]. Journal of Political Economy, 1966,74(2):132-157.
doi: 10.1086/259131 |
[33] |
Greene W H, Hensher D A. A latent class model for discrete choice analysis: Contrasts with Mixed Logit[J]. Transportation Research Part B: Methodological, 2003,37(8):681-698.
doi: 10.1016/S0191-2615(02)00046-2 |
[34] | 史恒通, 赵敏娟. 基于选择试验模型的生态系统服务支付意愿差异及全价值评估: 以渭河流域为例[J]. 资源科学, 2015,37(2):351-359. |
[ Shi H T, Zhao M J. Willingness to pay differences across ecosystem services and total economic valuation based on choice experiments approach[J]. Resources Science, 2015,37(2):351-359.] |
|