Resources Science ›› 2020, Vol. 42 ›› Issue (11): 2119-2131.doi: 10.18402/resci.2020.11.06
Previous Articles Next Articles
HUANG Qiwei1,2(), LIU Shiqi1, WANG Ping1,2(
), WANG Tianye3, YU Jingjie1,2, CHEN Xiaolong4, YANG Linsheng2,5
Received:
2020-09-02
Revised:
2020-10-06
Online:
2020-11-25
Published:
2021-01-25
Contact:
WANG Ping
E-mail:19s@igsnrr.ac.cn;wangping@igsnrr.ac.cn
HUANG Qiwei, LIU Shiqi, WANG Ping, WANG Tianye, YU Jingjie, CHEN Xiaolong, YANG Linsheng. Spatiotemporal variability of temperature and precipitation in typical Pan-Arctic basins, 1936-2018[J].Resources Science, 2020, 42(11): 2119-2131.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Statistical characteristics of multi-year average annual temperature and precipitation in the Ob, Yenisei, and Lena River basins, 1936-2018"
流域 | 时间段 | 温度 | 降水 | |||||
---|---|---|---|---|---|---|---|---|
平均值/ ℃ | 方差/ ℃ | 增速/ (℃/10 a) | 平均值/ mm | 方差/ mm | 增速/ (mm/10 a) | |||
鄂毕河 | 整年 | 0.06 | 1.06 | 0.27** | 496 | 53 | 13.02** | |
春季 | 0.49 | 1.77 | 0.39** | 96 | 18 | 4.14** | ||
夏季 | 16.10 | 0.84 | 0.17** | 204 | 24 | 0.15* | ||
秋季 | 0.20 | 1.45 | 0.21** | 129 | 18 | 3.96** | ||
冬季 | -16.87 | 2.42 | 0.30** | 66 | 18 | 4.68** | ||
叶尼塞河 | 整年 | -2.98 | 1.04 | 0.22** | 428 | 29 | 3.36* | |
春季 | -2.30 | 1.63 | 0.31** | 69 | 9 | 1.89** | ||
夏季 | 14.91 | 0.83 | 0.17** | 210 | 24 | -3.21** | ||
秋季 | -2.77 | 1.34 | 0.16** | 102 | 12 | 1.65** | ||
冬季 | -22.17 | 2.33 | 0.27* | 48 | 9 | 2.16** | ||
勒拿河 | 整年 | -7.41 | 0.97 | 0.15** | 369 | 38 | 9.59** | |
春季 | -5.76 | 1.69 | 0.31** | 54 | 12 | 3.00** | ||
夏季 | 14.73 | 0.79 | 0.10** | 198 | 27 | 2.10* | ||
秋季 | -7.70 | 1.31 | 0.05* | 87 | 12 | 3.21** | ||
冬季 | -30.91 | 1.99 | 0.20* | 33 | 6 | 1.26** |
Figure 2
Changes in TXx, TNn, and Tmean of the Ob, Yenisei, and Lena River basins, 1936-2018 (TXx: Extreme highest temperature of the year; TNn: Extreme lowest temperature of the year; Tmean: Average annual temperature; Light grey, dark grey, and black indicate the Ob, Yenisei, and Lena River basins, respectively) "
[1] |
Post E, Alley R B, Christensen T R, et al. The polar regions in a 2°C warmer world[J]. Science Advances, 2019,5(12): eaaw9883.
doi: 10.1126/sciadv.aay0764 pmid: 31976371 |
[2] |
Bowen J C, Ward C P, Kling G W, et al. Arctic amplification of global warming strengthened by sunlight oxidation of permafrost carbon to CO2[J]. Geophysical Research Letters, 2020, DOI: 10.1029/2020GL087085.
pmid: 32999517 |
[3] | Serreze M C, Barry R G. Processes and impacts of Arctic amplification: A research synjournal[J]. Global and Planetary Change, 2011,77(1-2):85-96. |
[4] | Abram N, Adler C, Bindoff N L, et al. Summary for Policymakers[A]. Pörtner H O, Roberts D C, Masson-Delmotte V, et al. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate[M]. Cambridge: Cambridge University Press, 2019. |
[5] |
Bintanja R, Krikken F. Magnitude and pattern of Arctic warming governed by the seasonality of radiative forcing[J]. Scientific Reports, 2016, DOI: 10.1038/srep38287.
doi: 10.1038/s41598-020-78881-3 pmid: 33319843 |
[6] |
Duncan B N, Ott L E, Abshire J B, et al. Space-based observations for understanding changes in the Arctic-Boreal Zone[J]. Reviews of Geophysics, 2020, DOI: 10.1029/2019RG000652.
doi: 10.1029/95rg00346 pmid: 17654788 |
[7] | 效存德, 苏勃, 窦挺峰, 等. 极地系统变化及其影响与适应新认识[J]. 气候变化研究进展, 2020,16(2):153-162. |
[ Xiao C D, Su B, Dou T F, et al. Interpretation of IPCC SROCC on polar system changes and their impacts and adaptations[J]. Climate Change Research, 2020,16(2):153-162.] | |
[8] |
Berner L T, Beck P S, Bunn A G, et al. Plant response to climate change along the forest-tundra ecotone in northeastern Siberia[J]. Global Change Biology, 2013,19(11):3449-3462.
doi: 10.1111/gcb.12304 pmid: 23813896 |
[9] |
Cohen J, Zhang X D, Francis J, et al. Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather[J]. Nature Climate Change, 2020,10(1):20-29.
doi: 10.1038/s41558-019-0662-y |
[10] |
Dai A G, Song M R. Little influence of Arctic amplification on mid-latitude climate[J]. Nature Climate Change, 2020,10(3):231-237.
doi: 10.1038/s41558-020-0694-3 |
[11] |
Graham R M, Cohen L, Petty A A, et al. Increasing frequency and duration of Arctic winter warming events[J]. Geophysical Research Letters, 2017,44(13):6974-6983.
doi: 10.1002/2017GL073395 |
[12] | Lehnherr I, Vincent L S L, Martin S, et al. The world’s largest High Arctic lake responds rapidly to climate warming[J]. Nat Commun, 2018, DOI: 10.1038/s41467-018-03685-z. |
[13] | 秦大河, 姚檀栋, 丁永建, 等. 冰冻圈科学体系的建立及其意义[J]. 中国科学院院刊, 2020,35(4):394-406. |
[ Qin D H, Yao T D, Ding Y J, et al. Establishment and significance of the scientific system of Cryospheric science[J]. Bulletin of the Chinese Academy of Sciences, 2020,35(4):394-406.] | |
[14] | Song C L, Wang G X, Mao T X, et al. Linkage between permafrost distribution and river runoff changes across the Arctic and the Tibetan Plateau[J]. Science China: Earth Sciences, 2020,63(2):292-302. |
[15] |
Murphy M J, Porcelli D, Strandmann V P, et al. Tracing silicate weathering processes in the permafrost-dominated Lena River watershed using lithium isotopes[J]. Geochimica Et Cosmochimica Acta, 2019,245(15):154-171.
doi: 10.1016/j.gca.2018.10.024 |
[16] |
Serikova S, Pokrovsky O S, Laudon H, et al. High carbon emissions from thermokarst lakes of Western Siberia[J]. Nature Communications, 2019,10(1):1-7.
doi: 10.1038/s41467-018-07882-8 pmid: 30602773 |
[17] | Iijima Y, Fedorov A N, Park H, et al. Abrupt increases in soil temperatures following increased precipitation in a permafrost region, central Lena River basin, Russia[J]. Permafrost and Periglacial Processes, 2010,21(1):30-41. |
[18] | Romanovsky V E, Drozdov D S, Oberman N G, et al. Thermal state of permafrost in Russia[J]. Permafrost and Periglacial Processes, 2010,21(2):136-155. |
[19] | Cheng G D, Jin H J. Permafrost and groundwater on the Qinghai-Tibet Plateau and in northeast China[J]. Hydrogeology Journal, 2013,21(1):5-23. |
[20] | Fedorov A N, Ivanova R N, Park H, et al. Recent air temperature changes in the permafrost landscapes of northeastern Eurasia[J]. Polar Science, 2014,8(2):114-128. |
[21] |
Bintanja R, Andry O. Towards a rain-dominated Arctic[J]. Nature Climate Change, 2017,7(4):263-267.
doi: 10.1038/nclimate3240 |
[22] |
Bintanja R, Selten F M. Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat[J]. Nature, 2014,509(7501):479-482.
doi: 10.1038/nature13259 pmid: 24805239 |
[23] | Bintanja R. The impact of Arctic warming on increased rainfall[J]. Science Reports, 2018,8(1):1-6. |
[24] | Box J E, Colgan W T, Christensen T R, et al. Key indicators of Arctic climate change: 1971-2017[J]. Environmental Research Letters, 2019,14(4):045010. |
[25] | Dwyer J G, O’gorman P A. Changing duration and spatial extent of midlatitude precipitation extremes across different climates[J]. Geophysical Research Letters, 2017,44(11):5863-5871. |
[26] | 姜彤, 孙赫敏, 李修仓, 等. 气候变化对水文循环的影响[J]. 气象科技, 2020,46(3):289-300. |
[ Jiang T, Sun H M, Li X C, et al. Impact of climate change on water cycle[J]. Meteorological Monthly, 2020,46(3):289-300.] | |
[27] |
Held I M, Soden B J. Robust Responses of the hydrological cycle to global warming[J]. Journal of Climate, 2006,19(21):5686-5699.
doi: 10.1175/JCLI3990.1 |
[28] |
王平, 王田野, 王冠, 等. 西伯利亚淡水资源格局与合作开发潜力分析[J]. 资源科学, 2018,40(11):2186-2195.
doi: 10.18402/resci.2018.11.05 |
[ Wang P, Wang T Y, Wang G, et al. Spatial distribution and potential exploration of water resources in Siberia[J]. Resources Science, 2018,40(11):2186-2195.] | |
[29] |
Obu J, Westermann S, Bartsch A, et al. Northern Hemisphere permafrost map based on TTOP modelling for 2000-2016 at 1 km2 scale[J]. Earth-Science Reviews, 2019,193:299-316.
doi: 10.1016/j.earscirev.2019.04.023 |
[30] |
Biskaborn B K, Smith S L, Noetzli J, et al. Permafrost is warming at a global scale[J]. Nature Communications, 2019,10(1):1-11.
doi: 10.1038/s41467-018-07882-8 pmid: 30602773 |
[31] |
Stuecker M F, Bitz C M, Armour K C, et al. Polar amplification dominated by local forcing and feedbacks[J]. Nature Climate Change, 2018,8(12):1076-1081.
doi: 10.1038/s41558-018-0339-y |
[32] |
Screen J A, Simmonds I. The central role of diminishing sea ice in recent Arctic temperature amplification[J]. Nature, 2010,464(7293):1334-1337.
doi: 10.1038/nature09051 pmid: 20428168 |
[33] |
Taylor P C, Cai M, Hu A X, et al. A decomposition of feedback contributions to polar warming amplification[J]. Journal of Climate, 2013,26(18):7023-7043.
doi: 10.1175/JCLI-D-12-00696.1 |
[34] | Hernández-Henríquez M A, Déry S J, Derksen C. Polar amplification and elevation-dependence in trends of Northern Hemisphere snow cover extent, 1971-2014[J]. Environmental Research Letters, 2015,10(4):044010. |
[35] |
Goosse H, Kay J E, Armour K C, et al. Quantifying climate feedbacks in polar regions[J]. Nature Communications, 2018,9(1):1-13.
pmid: 29317637 |
[36] | Screen J A, Simmonds I. Declining summer snowfall in the Arctic: Causes, impacts and feedbacks[J]. Climate Dynamics, 2012,38(11-12):2243-2256. |
[37] | Berghuijs W R, Woods R A, Hrachowitz M. A precipitation shift from snow towards rain leads to a decrease in streamflow[J]. Nature Climate Change, 2014,4(7):583-586. |
[38] | Bintanja R, van Der Linden E . The changing seasonal climate in the Arctic[J]. Science Reports, 2013,3(1):1-8. |
[39] | Benetti M, Reverdin G, Lique C, et al. Composition of freshwater in the spring of 2014 on the southern Labrador shelf and slope[J]. Journal of Geophysical Research-Oceans, 2017,122(2):1102-1121. |
[40] | Alexander L V, Allen S K, Bindoff N L, et al. IPCC, 2013: Technical Summary[A]. Stocker T F, Qin D, Plattner G K, et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2013. |
[41] |
Boeke R C, Taylor P C. Seasonal energy exchange in sea ice retreat regions contributes to differences in projected Arctic warming[J]. Nature Communications, 2018,9(1):1-14.
doi: 10.1038/s41467-017-02088-w pmid: 29317637 |
[42] | Doyle S H, Hubbard A, van de Wal R S W, et al. Amplified melt and flow of the Greenland ice sheet driven by late-summer cyclonic rainfall[J]. Nature Geoscience, 2015,8(8):647-653. |
[43] |
Dai A, Luo D, Song M, et al. Arctic amplification is caused by sea-ice loss under increasing CO2[J]. Nature Communications, 2019,10(1):1-13.
pmid: 30602773 |
[44] | Berner J, Callaghan T V, Huntington H, et al. ACIA Arctic Climate Impact Assessment[M]. Cambridge: Cambridge University Press, 2005. |
[45] | Wu W J, Sun X H, Epstein H E, et al. Spatial heterogeneity of climate variation and vegetation response for Arctic and high-elevation regions from 2001-2018[J]. Environmental Research Communications, 2020,2(1):011007. |
[46] | Tamarin-Brodsky T, Hodges K, Hoskins B J, et al. Changes in Northern Hemisphere temperature variability shaped by regional warming patterns[J]. Nature Geoscience, 2020,13(6):414-421. |
[47] | Xu M, Kang S C, Wang X M, et al. Climate and hydrological changes in the Ob River Basin during 1936-2017[J]. Hydrological Processes, 2020,34(8):1821-1836. |
[48] | 王冠, 陈涵如, 王平, 等. 俄罗斯环北极地区地表径流变化及其原因[J]. 资源科学, 2020,42(2):346-357. |
[ Wang G, Chen H R, Wang P, et al. Surface runoff changes and their causes in the Russian pan-Arctic Region[J]. Resources Science, 2020,42(2):346-357.] | |
[49] | Grabs W E, Portmann F, Couet T D. Discharge observation networks in Arctic regions: Computation of the river runoff into the Arctic Ocean, its seasonality and variability[A]. E. L. Lewis, E. P. Jones, P. Lemke, et al. The Freshwater Budget of the Arctic Ocean[M]. Dordrecht: Springer Netherlands, 2000. |
[50] | Amon R M W, Rinehart A J, Duan S, et al. Dissolved organic matter sources in large Arctic rivers[J]. Geochimica Et Cosmochimica Acta, 2012,94(1):217-237. |
[51] | Magritsky D V, Frolova N L, Evstigneev V M, et al. Long-term changes of river water inflow into the seas of the Russian Arctic sector[J]. Polarforschung, 2018,87(2):177-194. |
[52] | Troeva E I, Isaev A P, Cherosov M, et al. The Far North: Plant Biodiversity and Ecology of Yakutia[M]. Berlin: Springer Science & Business Media, 2010. |
[53] | Zhang T, Barry R G, Knowles K, et al. Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere1[J]. Polar Geography, 1999,23(2):132-154. |
[54] | Brown J, Ferrians Jr O J, Heginbottom J A, et al. Circum-Arctic Map of Permafrost and Ground-Ice Conditions[R]. Reston: Circum- Pacific Map Series, 1997. |
[55] |
Berkowitz B, Klafter J, Metzler R, et al. Physical pictures of transport in heterogeneous media: Advection-dispersion, random-walk, and fractional derivative formulations[J]. Water Resources Research, 2002, DOI: 10.1029/2001WR001030.
doi: 10.1029/2018WR023623 pmid: 31007298 |
[56] | Alexandrov G A, Brovkin V A, Kleinen T. The influence of climate on peatland extent in Western Siberia since the Last Glacial Maximum[J]. Scientific Reports, 2016,6(1):24784. |
[57] |
Wild B, Andersson A, Broder L, et al. Rivers across the Siberian Arctic unearth the patterns of carbon release from thawing permafrost[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019,116(21):10280-10285.
doi: 10.1073/pnas.1811797116 pmid: 31061130 |
[58] | Carmack E C, Yamamoto-Kawai M, Haine T W N, et al. Freshwater and its role in the Arctic Marine System: Sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans[J]. Journal of Geophysical Research: Biogeosciences, 2016,121(3):675-717. |
[59] | Wrona F J, Johansson M, Culp J M, et al. Transitions in Arctic ecosystems: Ecological implications of a changing hydrological regime[J]. Journal of Geophysical Research-Biogeosciences, 2016,121(3):650-674. |
[60] | Bulygina O N, Razuvaev V N. Daily Temperature and Precipitation Data for 518 Russian Meteorological Stations[R]. Oak Ridge: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, 2012. |
[61] |
Labe Z, Peings Y, Magnusdottir G. Warm arctic, cold Siberia pattern: Role of full arctic amplification versus sea ice loss alone[J]. Geophysical Research Letters, 2020, DOI: 10.1029/2020GL088583.
doi: 10.1029/2020GL088561 pmid: 32999517 |
[62] | Ye H C, Fetzer E J, Wong S, et al. Increasing atmospheric water vapor and higher daily precipitation intensity over northern Eurasia[J]. Geophysical Research Letters, 2015,42(21):9404-9410. |
[63] | Frey K E, Smith L C. Recent temperature and precipitation increases in West Siberia and their association with the Arctic Oscillation[J]. Polar Research, 2003,22(2):287-300. |
[64] | Sugiura K, Takahashi S, Kameda T, et al. Spatial characteristics of rainfall at sparsely distributed station network over the high-latitude mountainous regions in Eastern Siberia[J]. International Journal of Earth & Environmental Sciences, 2016, DOI: 10.15344/2456-351X/2016/104. |
[65] |
Gong T T, Feldstein S, Lee S. The role of downward infrared radiation in the recent arctic winter warming trend[J]. Journal of Climate, 2017,30(13):4937-4949.
doi: 10.1175/JCLI-D-16-0180.1 |
[66] |
Kaufmann R K, Zhou L, Myneni R B, et al. The effect of vegetation on surface temperature: A statistical analysis of NDVI and climate data[J]. Geophysical Research Letters, 2003, DOI: 10.1029/2003GL018251.
doi: 10.1029/2020GL088561 pmid: 32999517 |
[67] | Xu L, Myneni R B, Chapin F S, et al. Temperature and vegetation seasonality diminishment over northern lands[J]. Nature Climate Change, 2013,3(6):581-586. |
[68] |
Screen J A, Simmonds I. Increasing fall-winter energy loss from the Arctic Ocean and its role in Arctic temperature amplification[J]. Geophysical Research Letters, 2010, DOI: 10.1029/2010GL044136.
doi: 10.1029/2020GL088561 pmid: 32999517 |
[69] | Douglas T A, Turetsky M R, Koven C D. Increased rainfall stimulates permafrost thaw across a variety of Interior Alaskan boreal ecosystems[J]. Npj Climate and Atmospheric Science, 2020,3(1):1-7. |
[70] | Kolk H J V D, Heijmans M M P D, Huissteden J V, et al. Potential Arctic tundra vegetation shifts in response to changing temperature, precipitation and permafrost thaw[J]. Biogeosciences, 2016,13(22):6229-6245. |
[71] | Keuper F Parmentier F-J W, Blok D, et al. Tundra in the rain: Differential vegetation responses to three years of experimentally doubled summer precipitation in Siberian shrub and Swedish bog tundra[J]. Ambio, 2012,41(3):269-280. |
[72] | Kopec B G, Feng X H, Michel F A, et al. Influence of sea ice on Arctic precipitation[J]. Proceedings of the National Academy of Sciences, 2016,113(1):46-51. |
[73] | Farquharson L M, Romanovsky V E, Cable W L, et al. Climate change drives widespread and rapid thermokarst development in very cold permafrost in the Canadian high arctic[J]. Geophysical Research Letters, 2019,46(12):6681-6689. |
[74] | Heslop J K, Anthony K M W, Grosse G, et al. Century-scale time since permafrost thaw affects temperature sensitivity of net methane production in thermokarst-lake and talik sediments[J]. Science of The Total Environment, 2019,691(15):124-134. |
[75] |
Walter K M, Zimov S A, Chanton J P, et al. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming[J]. Nature, 2006,443(7107):71-75.
doi: 10.1038/nature05040 pmid: 16957728 |
[76] |
Schuur E A G, Vogel J G, Crummer K G, et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra[J]. Nature, 2009,459(7246):556-559.
doi: 10.1038/nature08031 pmid: 19478781 |
[77] |
Peterson B J, Holmes R M, Mcclelland J W, et al. Increasing river discharge to the Arctic Ocean[J]. Science, 2002,298(5601):2171-2173.
doi: 10.1126/science.1077445 pmid: 12481132 |
[1] | ZHAI Zhihong, JIANG Minxing, CHANG Chunying. Impact of precipitation on vegetable prices: Taking Guangzhou City as an example [J]. Resources Science, 2021, 43(2): 304-315. |
[2] | FANG Yan, Daniel SCOTT, Robert STEIGER, WU Bihu, JIANG Yiyi. Impact of snow-making technology improvement on ski season length in China under climate change [J]. Resources Science, 2020, 42(6): 1210-1222. |
[3] | GUO Mengyao, SHE Dunxian, ZHANG Liping, TANG Rouxin, ZHAO Pengyan. Climate explanation of the potential evapotranspiration changes in Weihe River Basin [J]. Resources Science, 2020, 42(5): 907-919. |
[4] | LI Huijuan, SHI Changxing, MA Xiaoqing, LIU Wei. Quantification of the influencing factors of runoff and sediment discharge changes of the Kuye River catchment in the middle reaches of the Yellow River [J]. Resources Science, 2020, 42(3): 499-507. |
[5] | WANG Guan, CHEN Hanru, WANG Ping, WANG Tianye, YU Jingjie, LIU Changming, YANG Linsheng. Surface runoff changes and their causes in the Russian pan-Arctic Region [J]. Resources Science, 2020, 42(2): 346-357. |
[6] | HAN Chuntan, WANG Lei, CHEN Rensheng, LIU Zhangwen, LIU Junfeng, YANG Yong, LV Hanqin. Precipitation observation network and its data application in the alpine region of Qilian Mountains [J]. Resources Science, 2020, 42(10): 1987-1997. |
[7] | ZHENG Jingyun, WEN Yanjun, FANG Xiuqi. Changes of climate and land cover in the middle and lower reaches of the Yellow River over the past 2000 years [J]. Resources Science, 2020, 42(1): 3-19. |
[8] | Zhiming HE, Yuechen LI, Xianfeng JIN, Xian LIU, Xiaobo HE. Spatial interpolation of mean temperature of Chongqing Municipality considering solar radiation correction [J]. Resources Science, 2019, 41(6): 1131-1140. |
[9] | Xiaofei LI, Changchun XU, Lu LI, Yingxue LUO, Qiuping YANG, Yuanyuan YANG. Evaluation of air temperature of the typical river basin in desert area of Northwest China by the CMIP5 models:A case of the Kaidu-Kongqi River Basin [J]. Resources Science, 2019, 41(6): 1141-1153. |
[10] | ZHU Xiaoqiang, DING Jianli, XIA Nan, GUO Jiaxin, ZHANG Shuxia, YANG Tongtong, WANG Jingzhe, LI Xiaohang. Temperature vegetation water index: A novel stabilized threshold method for lake surface water mapping [J]. Resources Science, 2019, 41(4): 790-802. |
[11] | LIU Lin, XU Zongxue, YANG Xiaojing. Relationship between drought/flood and ENSO events in Southwest China [J]. Resources Science, 2019, 41(11): 2144-2153. |
[12] | Bin WANG, Peng LI, Guoce XU, Yuting CHENG, Binhua ZHAO, Fang WEI. Temporal and spatial variation characteristics of annual temperature in China's first-level basin [J]. Resources Science, 2019, 41(1): 152-163. |
[13] | Libo CHANG, Yaofeng LUO, Jinlong LIU. Hani minority social-ecological system vulnerability assessment to climate change——a case study of Hani minority rural community in Honghe Prefecture, Yunnan Province [J]. Resources Science, 2018, 40(9): 1787-1799. |
[14] | Yanyun XIANG, Yaning CHEN, Qifei ZHANG, Wei BIAN. Trends of snow cover and streamflow variation in Kaidu River and their influential factors [J]. Resources Science, 2018, 40(9): 1855-1865. |
[15] | Xiang HAN, Yunhe YIN, Shaohong WU, Haoyu DENG. Evapotranspiration simulation and its spatio-temporal variation characteristics in Fenqin Region [J]. Resources Science, 2018, 40(8): 1658-1671. |
|