Resources Science ›› 2020, Vol. 42 ›› Issue (8): 1452-1463.doi: 10.18402/resci.2020.08.02
Previous Articles Next Articles
SHAO Liuguo1,2(), LAN Tingting1(
)
Received:
2020-03-05
Revised:
2020-07-07
Online:
2020-08-25
Published:
2020-10-25
Contact:
LAN Tingting
E-mail:shaoliuguo@qq.com;251854707@qq.com
SHAO Liuguo, LAN Tingting. Review of the by-product critical minerals resource security research and prospects[J].Resources Science, 2020, 42(8): 1452-1463.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Price relationship between by-product minerals and their main minerals"
文献作者 | 研究对象 | 研究方法 | 研究结论 |
---|---|---|---|
Campbell[ | 整个矿业行业 | 一般均衡模型、实证分析 | 短期内,主矿产和伴生性关键矿产需求反向变化时,它们价格之间存在负相关关系,需求同向变化时,则关系不明确,呈现单向因果关系 |
Naumov等[ | 稀土金属、稀散金属及其主矿产 | 需求原理分析 | 短期内,主矿产开采减少,伴生性关键矿产需求增加,伴生性关键矿产的价格上涨;相反,当主矿产开采增加,而伴生性关键矿产下降,伴生性关键矿产的价格下跌。呈现单向因果关系 |
Kim等[ | 锌(锗);铜(硒) | 实证分析、格兰杰因果检验 | 短期内,主矿产价格单向影响伴生性关键矿产价格。但例外的是,锌和铟的价格之间没有相关关系 |
Fizaine[ | 铝(镓);铜(硒、碲、钼);锌(铟) | VAR模型、协整分析 | 从长期来看,主矿产价格正向影响伴生性关键矿产价格。但只有铜和钼,铜和硒之间存在这种相关关系 |
Afflerbach等[ | 铝(镓);铜(钴、钼、硒、碲);镍(钴、铱、钯、碲);锌(锗、铟) | 利润最大化优化模型、线性回归分析 | 需求冲击下,主矿产和伴生性关键矿产的价格呈负相关关系。但铝和镓、钴和镍关系较弱 |
Shammugam等[ | 铝(镓);锌(铬、铟);铅(硒,铋);镍(钴);铜(钴) | 改进的Toda-Yamamoto方法 | 主矿产价格对伴生性关键矿产价格的影响是长期规律。但例外的是,铝和镓,镍和钴,铜和钴,锌和铟之间没有显著的因果关系 |
[1] | Clark A L, Jeon G J. Metal Consumption Trends in the Asia-Pacific Region: 1960-2015[C]. Manila: Pacific Economic Cooperation Conference, 1990. |
[2] |
成金华, 朱永光, 徐德义, 等. 产业结构变化对矿产资源需求的影响研究[J]. 资源科学, 2018,40(3):558-566.
doi: 10.18402/resci.2018.03.10 |
[ Cheng J H, Zhu Y G, Xu D Y, et al. Impact of industrial structure change on mineral resources demand[J]. Resources Science, 2018,40(3):558-566.] | |
[3] |
Zhang L G, Xu Z M. A critical review of material flow, recycling technologies, challenges and future strategy for scattered metals from minerals to wastes[J]. Journal of Cleaner Production, 2018,202:1001-1025.
doi: 10.1016/j.jclepro.2018.08.073 |
[4] | 王登红. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J]. 地质学报, 2019,93(6):1189-1209. |
[ Wang D H. Study on critical mineral resources: Significance of research, determination of types, attributes of resources, progress of prospecting, problems of utilization, and direction of exploitation[J]. Acta Geologica Sinica, 2019,93(6):1189-1209.] | |
[5] | 唐金荣, 杨宗喜, 周平, 等. 国外关键矿产战略研究进展及其启示[J]. 地质通报, 2014,33(9):1445-1453. |
[ Tang J R, Yang Z X, Zhou P, et al. The progress in the strategic study of critical minerals and its implications[J]. Geological Bulletin of China, 2014,33(9):1445-1453.] | |
[6] |
Nassar N T, Graedel T E, Harper E M. By-product metals are technologically essential but have problematic supply[J]. Science Advances, 2015,1(3):e1400180.
doi: 10.1126/sciadv.1400180 pmid: 26601159 |
[7] | Fortier S M, Nassar N T, Lederer G M, et al. Draft Critical Mineral List-Summary of Methodology and Background Information: U. S. Geological Survey Technical Input Document in Response to Secretarial Order No. 3359[R]. Virginia: U. S. Geological Survey Open-File Report, 2018. |
[8] |
Graedel T E, Barr R, Chandler C, et al. Methodology of metal criticality determination[J]. Environmental Science & Technology, 2012,46(2):1063-1070.
doi: 10.1021/es203534z pmid: 22191617 |
[9] |
Erdmann L, Graedel T E. Criticality of non-fuel minerals: A review of major approaches and analyses[J]. Environmental Science & Technology, 2011,45(18):7620-7630.
doi: 10.1021/es200563g pmid: 21834560 |
[10] | 张艳飞, 陈其慎, 于汶加, 等. 中国矿产资源重要性二维评价体系构建[J]. 资源科学, 2015,37(5):883-890. |
[ Zhang Y F, Chen Q S, Yu W J, et al. Building a two dimensional coordinate evaluation system of mineral resource importance[J]. Resources Science, 2015,37(5):883-890.] | |
[11] | Moss R L, Tzimas E, Kara H, et al. Critical Metals in Strategic Energy Technologies: Assessing Rare Metals as Supply-Chain Bottlenecks in Low-Carbon Energy Technologies[R]. Luxembourg: EU-Scientific and Technical Research Reports, 2011. |
[12] | Erdmann L, Behrendt S, Feil M. Kritische Rohstoffe für Deutschland[M]. Berlin: Institut für Zukunftsstudien und Technologiebewertung, 2011. |
[13] |
Graedel T E, Allwood J M, Birat J, et al. What do we know about metal recycling rates[J]. Journal of Industrial Ecology, 2011,15(3):355-366.
doi: 10.1111/j.1530-9290.2011.00342.x |
[14] | EC-European Commission. Critical Raw Materials for the EU[R]. Brussels: Report of the Ad-Hoc Working Group on Defining Critical Raw Materials, 2010. |
[15] |
Green M A. Rare materials for photovoltaics: Recent tellurium price fluctuations and availability from copper refining[J]. Solar Energy Materials and Solar Cells, 2013,119:256-260.
doi: 10.1016/j.solmat.2013.08.002 |
[16] |
Jordan B W, Eggert R G, Dixon B W, et al. Thorium: Crustal abundance, joint production, and economic availability[J]. Resources Policy, 2015,44:81-93.
doi: 10.1016/j.resourpol.2015.02.002 |
[17] |
Campbell G A. The role of co-products in stabilizing the metal mining industry[J]. Resources Policy, 1985,11(4):267-274.
doi: 10.1016/0301-4207(85)90044-3 |
[18] |
Sprecher B, Reemeyer L, Alonso E, et al. How “black swan” disruptions impact minor metals[J]. Resources Policy, 2017,54:88-96.
doi: 10.1016/j.resourpol.2017.08.008 |
[19] |
Naumov A V, Grinberg E E. Several peculiarities in the analysis of the markets of rare and scattered metals after 2004[J]. Russian Journal of Non-Ferrous Metals, 2009,50(1):61-68.
doi: 10.3103/S1067821209010131 |
[20] |
Sverdrup H U, Ragnarsdottir K V, Koca D. An assessment of metal supply sustainability as an input to policy: Security of supply extraction rates, stocks-in-use, recycling, and risk of scarcity[J]. Journal of Cleaner Production, 2017,140:359-372.
doi: 10.1016/j.jclepro.2015.06.085 |
[21] | Phipps G, Mikolajczak C, Guckes T, et al. Indium and Gallium: Long-term supply[J]. Renewable Energy Focus, 2008,9(4):56-59. |
[22] | Fortier S M, Hammarstrom J M, Ryker S J, et al. USGS critical minerals review[J]. Mining Engineering, 2019,71(5):35-47. |
[23] | 陆挺, 刘璇, 张艳飞, 等. 基于产业链分析的中国铟锗镓产业发展战略研究[J]. 资源科学, 2015,37(5):1008-1017. |
[ Lu T, Liu X, Zhang Y F, et al. Development strategies for the Chinese indium, germanium and gallium industry based industry chain analysis[J]. Resources Science, 2015,37(5):1008-1017.] | |
[24] | Hagelüken C. International Economics of Resource Efficiency[M]. Heidelberg: Physica-Verlag HD, 2011. |
[25] |
Frenzel M, Tolosana-Delgado R, Gutzmer J. Assessing the supply potential of high-tech metals: A general method[J]. Resources Policy, 2015,46:45-58.
doi: 10.1016/j.resourpol.2015.08.002 |
[26] |
Fizaine F. Byproduct production of minor metals: Threat or opportunity for the development of clean technologies? The PV sector as an illustration[J]. Resources Policy, 2013,38(3):373-383.
doi: 10.1016/j.resourpol.2013.05.002 |
[27] |
Prasai D, Tuberquia J C, Harl R R, et al. Graphene: Corrosion-inhibiting coating[J]. ACS Nano, 2012,6(2):1102-1108.
pmid: 22299572 |
[28] |
Raman R K S, Banerjee P C, Lobo D E, et al. Protecting copper from electrochemical degradation by graphene coating[J]. Carbon, 2012,50(11):4040-4045.
doi: 10.1016/j.carbon.2012.04.048 |
[29] |
Ylä-Mella J, Pongrácz E. Drivers and constraints of critical materials recycling: The case of indium[J]. Resources, 2016, DOI: 10.3390/resources5040034.
doi: 10.1080/23802359.2016.1197070 pmid: 28367503 |
[30] |
Kral U, Kellner K, Brunner P H. Sustainable resource use requires “clean cycles” and safe “final sinks”[J]. Science of the Total Environment, 2013,461:819-822.
doi: 10.1016/j.scitotenv.2012.08.094 pmid: 23017730 |
[31] |
何朋蔚, 王昶, 左绿水, 等. 基于废弃手机的高技术矿产可供性研究[J]. 资源科学, 2018,40(3):589-599.
doi: 10.18402/resci.2018.03.13 |
[ He P W, Wang C, Zuo L S, et al. Availability analysis of high-tech minerals in waste mobile phones[J]. Resources Science, 2018,40(3):589-599.] | |
[32] | 张迎新. 欧盟将 14 类矿产确定为关键原材料[J]. 国土资源情报, 2011, (5):35-39. |
[ Zhang Y X. EU identifies 14 types of minerals as critical raw materials[J]. Land and Resources Information, 2011, (5):35-39.] | |
[33] |
Mudd G M, Weng Z, Jowitt S M, et al. Quantifying the recoverable resources of by-product metals: The case of cobalt[J]. Ore Geology Reviews, 2013,55:87-98.
doi: 10.1016/j.oregeorev.2013.04.010 |
[34] |
Sverdrup H U, Ragnarsdottir K V, Koca D. An assessment of metal supply sustainability as an input to policy: Security of supply extraction rates, stocks-in-use, recycling, and risk of scarcity[J]. Journal of Cleaner Production, 2017,140:359-372.
doi: 10.1016/j.jclepro.2015.06.085 |
[35] | 王昶, 秦雅, 邵留国, 等. 基于系统动力学的清洁能源技术关键伴生金属可供性研究: 以镓为例[J]. 系统工程, 2018, (5):116-127. |
[ Wang C, Qin Y, Shao L G, et al. Key associated materials availability in clean energy technologies based on system dynamics: The case study of gallium[J]. Systems Engineering, 2018, (5):116-127.] | |
[36] |
Frenzel M, Ketris M P, Seifert T, et al. On the current and future availability of gallium[J]. Resources Policy, 2016,47:38-50.
doi: 10.1016/j.resourpol.2015.11.005 |
[37] |
Mudd G M, Jowitt S M, Werner T T. The world’s by-product and critical metal resources part I: Uncertainties, current reporting practices, implications and grounds for optimism[J]. Ore Geology Reviews, 2017,86:924-938.
doi: 10.1016/j.oregeorev.2016.05.001 |
[38] |
Werner T T, Mudd G M, Jowitt S M. Indium: Key issues in assessing mineral resources and long-term supply from recycling[J]. Applied Earth Science, 2015,124(4):213-226.
doi: 10.1179/1743275815Y.0000000007 |
[39] | Schwarz-Schampera U, Gun G. Critical Metals Handbook[M]. Washington: American Geophysical Union, 2014. |
[40] | 沈镭, 方兰. 矿产资源市场与贸易的变化格局及对中国经济的影响[J]. 资源与生态学报, 2010,1(1):83-86. |
[ Shen L, Fang L. The changing patterns of mineral market, trade and their impact on China’s economy[J]. Journal of Resources and Ecology, 2010,1(1):83-86.] | |
[41] | 朱学红, 张宏伟, 李心媛. 中国稀土国际市场势力测度及政策有效性研究[J]. 国际贸易问题, 2018, (1):32-44. |
[ Zhu X H, Zhang H W, Li X Y. Measurement of the international market power of China’s rare earth and the effectiveness of policy[J]. Journal of International Trade, 2018, (1):32-44.] | |
[42] |
Achzet B, Helbig C. How to evaluate raw material supply risks: An overview[J]. Resources Policy, 2013,38(4):435-447.
doi: 10.1016/j.resourpol.2013.06.003 |
[43] |
Glöser S, Espinoza L T, Gandenberger C, et al. Raw material criticality in the context of classical risk assessment[J]. Resources Policy, 2015,44:35-46.
doi: 10.1016/j.resourpol.2014.12.003 |
[44] | 梁靓, 代涛, 王高尚. 基于供需视角的中国矿产资源国际贸易格局分析[J]. 中国矿业, 2017,26(9):53-60. |
[ Liang L, Dai T, Wang G S. Analysis of China’s international trade pattern of mineral resources based on the perspective of supply and demand[J]. China Mining Magazine, 2017,26(9):53-60.] | |
[45] |
Gulley A L, Nassar N T, Xun S. China, the United States, and competition for resources that enable emerging technologies[J]. Proceedings of the National Academy of Sciences, 2018,115(16):4111-4115.
doi: 10.1073/pnas.1717152115 |
[46] |
Serrano M A, Boguná M. Topology of the world trade web[J]. Physical Review E, 2003, DOI: 10.1103/PhysRevE.68.015101.
pmid: 32942498 |
[47] |
Mancheri N A, Sprecher B, Deetman S, et al. Resilience in the tantalum supply chain[J]. Resources, Conservation and Recycling, 2018,129:56-69.
doi: 10.1016/j.resconrec.2017.10.018 |
[48] |
Ge J P, Wang X B, Guan Q, et al. World rare earths trade network: Patterns, relations and role characteristics[J]. Resources Policy, 2016,50:119-130.
doi: 10.1016/j.resourpol.2016.09.002 |
[49] |
Tokito S, Kagawa S, Nansai K. Understanding international trade network complexity of platinum: The case of Japan[J]. Resources Policy, 2016,49:415-421.
doi: 10.1016/j.resourpol.2016.07.009 |
[50] |
Klimek P, Obersteiner M, Thurner S. Systemic trade risk of critical resources[J]. Science Advances, 2015,1(10):e1500522.
doi: 10.1126/sciadv.1500522 pmid: 26702431 |
[51] |
Wang S, Chen B. Hybrid ecological network and flow-distance analysis for international oil trade[J]. Energy Procedia, 2016,104:209-214.
doi: 10.1016/j.egypro.2016.12.036 |
[52] |
Kitamura T, Managi S. Driving force and resistance: Network feature in oil trade[J]. Applied Energy, 2017,208:361-375.
doi: 10.1016/j.apenergy.2017.10.028 |
[53] |
Shi Y L, Chen W Q, Wu S L, et al. Anthropogenic cycles of arsenic in mainland China: 1990-2010[J]. Environmental Science & Technology, 2017,51(3):1670-1678.
doi: 10.1021/acs.est.6b01669 pmid: 28043121 |
[54] |
Nassar N T. Shifts and trends in the global anthropogenic stocks and flows of tantalum[J]. Resources, Conservation and Recycling, 2017,125:233-250.
doi: 10.1016/j.resconrec.2017.06.002 |
[55] |
Nansai K, Nakajima K, Kagawa S, et al. Global flows of critical metals necessary for low-carbon technologies: The case of neodymium, cobalt, and platinum[J]. Environmental Science & Technology, 2014,48(3):1391-1400.
doi: 10.1021/es4033452 pmid: 24387330 |
[56] |
Mudd G M, Jowitt S M. A detailed assessment of global nickel resource trends and endowments[J]. Economic Geology, 2014,109(7):1813-1841.
doi: 10.2113/econgeo.109.7.1813 |
[57] |
Weng Z, Jowitt S M, Mudd G M, et al. A detailed assessment of global rare earth element resources: Opportunities and challenges[J]. Economic Geology, 2015,110(8):1925-1952.
doi: 10.2113/econgeo.110.8.1925 |
[58] | Kim H, Heo E. Causality Between Main Product and Byproduct Prices of Metals Used for Thin-Film PV Cells[C]. Seoul: IAEE, 2012. |
[59] |
Afflerbach P, Fridgen G, Keller R, et al. The by-product effect on metal markets: New insights to the price behavior of minor metals[J]. Resources Policy, 2014,42:35-44.
doi: 10.1016/j.resourpol.2014.08.003 |
[60] |
Shammugam S, Rathgeber A, Schlegl T. Causality between metal prices: Is joint consumption a more important determinant than joint production of main and by-product metals?[J]. Resources Policy, 2019,61:49-66.
doi: 10.1016/j.resourpol.2019.01.010 |
[61] |
Jordan B W. Companions and competitors: Joint metal-supply relationships in gold, silver, copper, lead and zinc mines[J]. Resource and Energy Economics, 2017,49:233-250.
doi: 10.1016/j.reseneeco.2017.05.003 |
[62] |
Slade M E. Market structure, marketing method, and price instability[J]. The Quarterly Journal of Economics, 1991,106:1309-1340.
doi: 10.2307/2937966 |
[63] |
Redlinger M, Eggert R. Volatility of by-product metal and mineral prices[J]. Resources Policy, 2016,47:69-77.
doi: 10.1016/j.resourpol.2015.12.002 |
[64] |
Fizaine F. Minor metals and organized markets: News highlights about the consequences of establishing a futures market in a thin market with a dual trading price system[J]. Resources Policy, 2015,46:59-70.
doi: 10.1016/j.resourpol.2015.08.004 |
[65] | 国务院发展研究中心课题组, 李伟, 隆国强, 等. 未来15年国际经济格局变化和中国战略选择[J]. 管理世界, 2018,34(12):1-12. |
[The Research Group of Development Research Center of the State Council, Li W, Long G Q, et al. The change of international economic pattern and China’s strategic choice in the next 15 years[J]. Management World, 2018,34(12):1-12.] |
No related articles found! |
|