Resources Science ›› 2020, Vol. 42 ›› Issue (3): 536-547.doi: 10.18402/resci.2020.03.12
Previous Articles Next Articles
GENG Aixin1,2, PAN Wenqi1,2, YANG Hongqiang1,2,3()
Received:
2019-05-14
Revised:
2019-09-17
Online:
2020-03-25
Published:
2020-05-25
Contact:
YANG Hongqiang
E-mail:yhqnfu@aliyun.com
GENG Aixin, PAN Wenqi, YANG Hongqiang. Quantifying the mitigating effects and benefits from substituting wood biomass for coal in energy production in China[J].Resources Science, 2020, 42(3): 536-547.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Greenhouse gas reduction and cost efficiency of substituting wood pellet for fossil fuel"
生物质能源用途及假设 | 减排效益评估 | 经济效益评估 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
可替代燃料 | 用途 | 碳中性 | 非碳 中性 | 评估方法 | 减排效果 | 评估方法 | 经济效果 | |||||
煤炭 | 石油 | 天然气 | 供热 | 供电 | 替代供能成本 | 替代减排成本 | ||||||
化石燃料平均值 | √ | √ | LCA[ | 减排50%~68% | - | - | ||||||
√ | √ | √ | LCA+市场效应+土地利用效应[ | 减排74%~85% | - | - | ||||||
√ | √ | √ | √ | √ | √ | LCA[ | 减排81%~97% | LCC | 油价较高时可行 | |||
√ | √ | √ | √ | LCA[ | 减排83%~92% | LCC+非燃料可变成本 | 木质剩余物:30~65 $/t CO2e 圆木制粒:100~170 $/t CO2e | |||||
√ | √ | √ | LCA [ | 碳中性:减排 63%~94% 非碳中性: 减排40%~62% | 市场价格 | 67.55~78.8 $/t CO2e | ||||||
√ | √ | √ | LCA[ | 减排>93% | LCC+碳价 | 与煤价、运距及产量相关 | ||||||
√ | √ | √ | LCA[ | 减排94% | 市场价格 | 5.03~6.58 $/GJ | ||||||
√ | √ | √ | √ | 使用排放[ | 每t木粒减排1.37万t CO2e | 运行成本 | 成本降低32.59%~67.05% |
Table 2
Energy input parameters in the life cycle of different energy systems"
原料获取与燃料生产阶段 | 运输阶段 | 使用阶段 | ||||
---|---|---|---|---|---|---|
运输模式及比例[ | 能源强度/(KJ/tkm) | 运输距离/km | 能源种类及比例/% | |||
煤炭 | 开采效率97%[ 洗选效率95%[ | 铁路(75) | 120[ | 651[ | 柴油(30[ | 供电标准煤耗3.125 kW·h/kg[ 标准煤热值29.307 MJ/kg[ |
电力(70[ | ||||||
水路(17) | 498[ | 1477[ | 燃料油(100[ | |||
公路运输(8) | 98[ | 181[ | 柴油(68[ | |||
汽油(32[ | ||||||
木质颗 粒燃料 | 采伐残余率25%[ 成粒率75.8%[ | 公路运输(100) | 98[ | 180[ | 柴油(68[ | 供电消耗4.4 kW·h/kg[ 木质颗粒热值18.84 MJ/kg[ |
Table 4
Energy consumption and greenhouse gas emissions inventory of coal and wood pellet production"
能源系统 | 单位 | 能源消耗/MJ | 温室气体排放/g CO2e | 温室气体细分 | ||
---|---|---|---|---|---|---|
CO2 | N2O | CH4 | ||||
木质颗粒 | t | 425.11(柴油) | 31.61×103 | 31.51×103 | 67.28 | 35.88 |
334.08(电能) | ||||||
MJ | 0.04 | 1.676 | 1.670 | 0.004 | 0.002 | |
kW·h | 0.17 | 7.183 | 7.160 | 0.015 | 0.008 | |
煤炭 | t | 1020 | 131.00×103 | 121.00×103 | 10.00×103 | |
MJ | 0.04 | 4.47 | 4.13 | 0.34 | ||
kW·h | 0.33 | 41.92 | 38.72 | 3.20 |
Table 5
Energy consumption and greenhouse gas emissions inventory of coal and wood pellet transportation"
能源系统 | 单位 | 能源消耗/MJ | 温室气体排放/g CO2e | 温室气体细分 | ||
---|---|---|---|---|---|---|
CO2 | N2O | CH4 | ||||
木质颗粒 | t | 12.00(柴油) | 1296.82 | 1280.00 | 11.06 | 5.76 |
5.64(汽油) | ||||||
MJ | 0.001 | 0.069 | 0.068 | 0.001 | 0.000 | |
kW·h | 0.004 | 0.295 | 0.291 | 0.003 | 0.001 | |
煤炭 | t | 18.54(柴油) | 5271.68 | 5254.00 | 10.88 | 5.80 |
49.72(燃料油) | ||||||
0.45(汽油) | ||||||
41.00(电能) | ||||||
MJ | 0.006 | 0.180 | 0.180 | 0.000 | 0.000 | |
kW·h | 0.020 | 1.685 | 1.680 | 0.003 | 0.002 |
Table 6
Greenhouse gas emissions inventory of coal and wood pellet for heat and power generation "
能源系统 | 单位 | 温室气体细分 | ||||
---|---|---|---|---|---|---|
假设 | 温室气体排放/g CO2e | CO2 | N2O | CH4 | ||
木质颗粒 | MJ | 碳中性 | 2.375 | 0.000 | 1.325 | 1.050 |
非碳中性 | 124.015 | 121.640 | 1.325 | 1.050 | ||
kW·h | 碳中性 | 10.169 | 0.000 | 5.673 | 4.496 | |
非碳中性 | 531.999 | 520.830 | 5.673 | 4.496 | ||
煤炭 | MJ | 118.782 | 118.250 | 0.497 | 0.035 | |
kW·h | 1018.54 | 1014.00 | 4.24 | 0.30 |
Table 7
Sensitivity analysis of contribution to variance in greenhouse gas reduction and cost efficiency of substituting wood pellet for fossil fuel"
影响因素 | 参数假设 | 敏感性分析 | ||||
---|---|---|---|---|---|---|
供热减排效率 | 供电减排效率 | 供热成本变化 | 供电成本变化 | |||
能源结构 | 木质颗粒燃料生命周期耗电+10% | +0.12% | +0.05% | |||
木质颗粒燃料生命周期耗能+10% | -0.14% | -0.07% | ||||
运输距离 | 木质颗粒燃料运输距离+10% | -0.03% | -0.01% | |||
燃料使用效率 | 木质颗粒燃料最终使用效率+10% | 碳中性假设 | +0.18% | +0.09% | -15.90% | 由正转负 |
非碳中性假设 | 由负转正 | +9.25% | -15.90% | 由正转负 | ||
燃料热值 | 木质颗粒燃料热值+10% | 碳中性假设 | +0.32% | -15.90% | ||
非碳中性假设 | 由负转正 | -15.90% | ||||
木质颗粒燃料供电效率+10% | 碳中性假设 | +0.15% | 由正转负 | |||
非碳中性假设 | +8.88% | 由正转负 | ||||
燃料价格 | 木质颗粒燃料价格+10% | +17.49% | +159% |
[1] | 陈家新, 杨红强 . 全球森林及林产品碳科学研究进展与前瞻[J]. 南京林业大学学报: 自然科学版, 2018,42(4):1-8. |
[ Chen J X, Yang H Q . Advances and frontiers in global forest and harvested wood products carbon science[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2018,42(4):1-8.] | |
[2] | Su X, Zhang X . A detailed analysis of the embodied energy and carbon emissions of steel-construction residential buildings in China[J]. Energy and Buildings, 2016,119:323-330. |
[3] | 中国国家可再生能源中心. 中国可再生能源展望2017[EB/OL]. ( 2017- 10- 18) [2019-04-05]. . |
[ China National Renewable Energy Centre. China Renewable Energy Outlook 2017[EB/OL]. ( 2017- 10- 18) [2019-04-05]. .] | |
[4] | 国家统计局. 中华人民共和国2018年国民经济和社会发展统计公报[J]. 中国统计, 2019, ( 3):8-22. |
[ National Bureau of Statistics. 1998 statistics bulletin of the national economic and social development of the People’s Republic of China[J]. China Statistics, 2019, ( 3):8-22.] | |
[5] | 姜克隽 . 一个强有力的2050碳减排目标将非常有利于中国的社会经济发展[J]. 气候变化研究进展, 2019,15(1):103-106. |
[ Jiang K J . An ambitious CO2 mitigation target will bring much benefit to China’s social economy development[J]. Climate Change Research, 2019,15(1):103-106.] | |
[6] | Barrette J, Thiffault E, Achim A , et al. A financial analysis of the potential of dead trees from the boreal forest of eastern Canada to serve as feedstock for wood pellet export[J]. Applied Energy, 2017,198:410-425. |
[7] | Food and Agriculture Organization of the United Nations. Forestry for a Low Carbon Future: Integrating Forests and Wood Products in Climate Change Strategies[R]. Rome: FAO Forestry Paper, 2016. |
[8] | Mckechnie J, Saville B, Maclean H L . Steam-treated wood pellets: Environmental and financial implications relative to fossil fuels and conventional pellets for electricity generation[J]. Applied Energy, 2016,180:637-649. |
[9] | Mathews R, Sokka L, Soimakallio S , et al. Review of Literature on Biogenic Carbon and Life Cycle Assessment of Forest Bioenergy[R]. Farnham: The Research Agency of the Forestry Commission (EU DG ENER Project ENER/C1/427), 2014. |
[10] | Laschi A, Marchi E, González-García S . Environmental performance of wood pellets’ production through life cycle analysis[J]. Energy, 2016,103:469-480. |
[11] | Buchholz T, Gunn J S, Saah D S . Greenhouse gas emissions of local wood pellet heat from northeastern US forests[J]. Energy, 2017,141:483-491. |
[12] | Sikkema R, Junginger M, Pichler W , et al. The international logistics of wood pellets for heating and power production in Europe: Costs, energy-input and greenhouse gas balances of pellet consumption in Italy, Sweden and the Netherlands[J]. Biofuels, Bioproducts and Biorefining, 2010,4(2):132-153. |
[13] | Sjølie H K, Solberg B . Greenhouse gas emission impacts of use of Norwegian wood pellets: A sensitivity analysis[J]. Environmental Science & Policy, 2011,14(8):1028-1040. |
[14] | 陈喜龙, 李际平, 王义强 , 等. 木质颗粒燃料锅炉替代燃油燃气锅炉效益分析[J]. 农业工程学报, 2011, ( 2):131-134. |
[ Chen X L, Li J P, Wang Y Q , et al. Efficiency analysis of oil or gas boiler with wood-pellet fuel substitution[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, ( 2):131-134.] | |
[15] | Dwivedi P, Khanna M, Bailis R , et al. Potential greenhouse gas benefits of transatlantic wood pellet trade[J]. Environmental Research Letters, 2014, DOI: 10.1088/1748-9326/9/2/024007. |
[16] | Wang W, Dwivedi P, Abt R , et al. Carbon savings with transatlantic trade in pellets: Accounting for market-driven effects[J]. Environmental Research Letters, 2015, DOI: 10.1088/1748-9326/10/11/114019. |
[17] | Micha T M, Jon M K, Stephen C . The carbon neutrality assumption for forest bioenergy: A case study for northwestern Ontario[J]. The Forestry Chronicle, 2011,87(5):644-652. |
[18] | Geng A X, Yang H Q, Chen J X . Review of carbon storage function of harvested wood products and the potential of wood substitution in greenhouse gas mitigation[J]. Forest Policy and Economics, 2017,85:192-200. |
[19] | McKechnie J, Colombo S, Chen J , et al. Forest bioenergy or forest carbon? Assessing trade-offs in greenhouse gas mitigation with wood-based fuels[J]. Environmental Science & Technology, 2011,45(2):789-795. |
[20] | Ter-Mikaelian M T, Colombo S J, Lovekin D , et al. Carbon debt repayment or carbon sequestration parity? Lessons from a forest bioenergy case study in Ontario, Canada[J]. Global Change Biology Bioenergy, 2015,7(4):704-716. |
[21] | Qin X Y, Mohan T, El-halwagi M , et al. Switchgrass as an alternate feedstock for power generation: An integrated environmental, energy and economic life-cycle assessment[J]. Clean Technologies and Environmental Policy, 2006,8(4):233-249. |
[22] | Wang C B, Chang Y, Zhang L X , et al. A life-cycle comparison of the energy, environmental and economic impacts of coal versus wood pellets for generating heat in China[J]. Energy, 2016,120:374-384. |
[23] | Ehrig R, Behrendt F . Co-firing of imported wood pellets: An option to efficiently save CO2 emissions in Europe?[J]. Energy Policy, 2013,59:283-300. |
[24] | Joshi O, Grebner D, Henderson J , et al. Input-output modeling of wood-based bioenergy industries in Mississippi[J]. Forest Products Journal, 2012,62:528-537. |
[25] | 国家林业局. 全国林业生物质能源发展规划(2011-2020年)[EB/OL]. ( 2013- 05- 28) [2019-05-14]. . |
[ State Forestry Administration. National Forestry Biomass Energy Development Plan (2011-2010)[EB/OL]. ( 2013- 05- 28) [2019-05-14]. .] | |
[26] | 许恩银, 陶韵, 杨红强 . LULUCF关联林业碳问题研究进展[J]. 资源科学, 2019,41(9):1641-1654. |
[ Xu E Y, Tao Y, Yang H Q . Research progress of forestry carbon issues related to land use, land-use change and forestry[J]. Resources Science, 2019,41(9):1641-1654.] | |
[27] | 张旭芳, 杨红强, 张小标 . 1993-2033年中国林业碳库水平及发展态势[J]. 资源科学, 2016,38(2):108-117. |
[ Zhang X F, Yang H Q, Zhang X B . Development level and trend in Chinese forestry carbon pools from 1989 to 2033[J]. Resources Science, 2016,38(2):108-117.] | |
[28] | 张小标, 杨红强 . 基于GFPM的中国林产品碳储效能及碳库结构动态预测[J]. 资源科学, 2015,37(7):101-111. |
[ Zhang X B, Yang H Q . Dynamic projection of storage efficiency and carbon pool structure of China’s harvested wood products based on GFPM[J]. Resources Science, 2015,37(7):101-111.] | |
[29] | 耿爱欣, 杨红强 . 生物质能源替代化石能源的成本有效性拓展模型: 基于时间价值视角[J]. 资源开发与市场, 2017,33(5):533-539. |
[ Geng A X, Yang H Q . Construction of cost-effectiveness model of greenhouse gas mitigation by replacing fossil fuels with bioenergy: From the perspective of time-value[J]. Resource Development & Market, 2017,33(5):533-539.] | |
[30] | 王珊珊, 张寒, 杨红强 . 中国人造板行业的生命周期碳足迹和能源耗用评估[J]. 资源科学, 2019,41(3):521-531. |
[ Wang S S, Zhang H, Yang H Q . Carbon footprint and energy consumption based on life cycle assessment of wood-based panel industry in China[J]. Resources Science, 2019,41(3):521-531.] | |
[31] | Chang Y, Huang R, Ries R J , et al. Life-cycle comparison of greenhouse gas emissions and water consumption for coal and shale gas fired power generation in China[J]. Energy, 2015,86:335-343. |
[32] | 欧训民, 张希良 . 中国终端能源的全生命周期化石能耗及碳强度分析[J]. 中国软科学, 2009, ( S2):208-214. |
[ Ou X M, Zhang X L . Fossil energy consumption and GHG emissions of final energy by LCA in China[J]. China Soft Science, 2009, ( S2):208-214.] | |
[33] | Intergovernmental Panel on Climate Change ( IPCC). 2006 IPCC Guidelines for National Greenhouse Gas Inventories[R]. Hayama: Institute for Global Environmental Strategies, 2006. |
[34] | Intergovernmental Panel on Climate Change. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Cambridge: IPCC, 2013. |
[35] | International Organization for Standardization. Environmental Management: Life Cycle Assessment: Principles and Framework[S]. Geneva: IOS, 2006. |
[36] | 国家统计局. 中国统计年鉴2018[M]. 北京: 中国统计出版社, 2018. |
[ National Bureau of Statistics of China. China Statistical Yearbook 2018[M]. Beijing: China Statistics Press, 2018.] | |
[37] | 中国人民共和国交通运输部. 2018年铁道统计公报[EB/OL]. ( 2019- 04- 26) [2019-06-05]. . |
[ Ministry of Transport of the People’s Republic of China. Bulletin of Statistics for the Chinese Railways in 2018[EB/OL]. ( 2019- 04- 26) [2019-06-05]. .] | |
[38] | 国家能源局. 中国电力年鉴2015[M]. 北京: 中国电力出版社, 2015. |
[ National Energy Administration. China Electric Power Yearbook 2015[M]. Beijing: China Electric Power Press, 2015.] | |
[39] | 中国人民共和国交通运输部. 2012年中国公路水路交通运输行业发展统计公报[EB/OL]. ( 2013- 04- 25) [2019-06-05]. . |
[ Ministry of Transport. Bulletin on the Development of China’s Highway and Waterway Transportation Industry in 2012[EB/OL]. ( 2013- 04- 25) [2019-06-05]. .] | |
[40] | Ruiz D, San Miguel G, Corona B , et al. LCA of a multifunctional bioenergy chain based on pellet production[J]. Fuel, 2018,215:601-611. |
[41] | 商品价格网. 价格行情[EB/OL]. ( 2019- 03- 29) [2019-05-25]. . |
[ Price.mofcom.gov.cn. Commodity Price Net[EB/OL] ( 2019- 03- 29) [2019-05-25]. .] | |
[42] | 生物质颗粒交易网. 供应[EB/OL]. ( 2019- 05- 27) [2019-06-05]. . |
[ Biomass Pellet Trading. Supply[EB/OL]. ( 2019- 05- 27) [2019-06-05]. .] | |
[43] | Geng A X, Zhang H, Yang H Q . Greenhouse gas reduction and cost efficiency of using wood flooring as an alternative to ceramic tile: A case study in China[J]. Journal of Cleaner Production, 2017,166:438-448. |
[44] | Geng A X, Chen J X, Yang H Q . Assessing the greenhouse gas mitigation potential of harvested wood products substitution in China[J]. Environmental Science & Technology, 2019,53(3):1732-1740. |
|