Resources Science ›› 2020, Vol. 42 ›› Issue (1): 96-103.doi: 10.18402/resci.2020.01.10
Previous Articles Next Articles
WANG Shuai1, FU Bojie1,*(), WU Xutong2, WANG Yaping1
Received:
2019-12-09
Revised:
2020-01-08
Online:
2020-01-25
Published:
2020-01-25
Contact:
FU Bojie
E-mail:bfu@rcees.ac.cn
WANG Shuai, FU Bojie, WU Xutong, WANG Yaping. Dynamics and sustainability of social-ecological systems in the Loess Plateau[J].Resources Science, 2020, 42(1): 96-103.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Summary of selected social-ecological system research frameworks"
框架 | 目的 | 组件 | 连接 | 尺度 | 背景 |
---|---|---|---|---|---|
人类生态 系统[ | 发展生态系统管理的跨学科组织概念 | 关键性资源(自然、社会经济和文化资源)和人类社会系统(社会制度、周期和秩序) | 连接表征流向;未关注非线性或随机连接;反馈作用有所涉及 | 强调多尺度,组件所处时空尺度决定了对组件的理解;跨尺度连接有所涉及 | 社会和土地利用的历史状态 |
恢复力[ | 关注社会生态系统动态演化机制与系统稳健性 | 框架未指定组件或子组件 | 用可标度变量表征连接,连接程度影响系统状态;系统本身体现非线性或随机关系、以及反馈作用,但未通过连接表示 | 强调无限尺度,复杂系统在演化适应过程中,组件的相互连接呈现多层次结构,该结构在其形成、发展、重组和更新周期中具有时间无限性;跨尺度连接表述详细 | 系统历史状态 |
生态系统 服务综合 评估[ | 加强生态系统功能、商品和服务研究的可对比性 | 生态系统服务(调节、供给、文化和支持)与人类福祉 | 连接表征生态系统对人类福祉的影响程度;非线性或随机连接有所涉及;关注管理对生态系统结构的反馈 | 强调多尺度,生态系统与其所提供服务的交互作用可发生在单一尺度,也可跨尺度 | 影响价值评估的驱动因子 |
脆弱性[ | 关注人类与环境复杂系统的脆弱性,并为其分析与评估构建概念框架 | 脆弱性(暴露度、敏感性和恢复力)评估组件和背景组件(系统外部人类与环境对系统的影响) | 连接表征组件间的因果关系,用箱体表示组件内部的连接;非线性或随机连接有所涉及;反馈作用表述详细 | 强调多尺度,认为多尺度连接和跨尺度反馈对系统脆弱性产生影响 | 灾害驱动因子;考虑背景与系统内部交互作用 |
人与自然系统耦合[ | 促进范式转换,强调人与自然在空间、组织和时间尺度上的多层次耦合 | 人类与自然两类,具体构成取决于研究对象 | 对系统中存在的多种连接展开详细描述,包括连接间的非线性或随机关系和反馈作用 | 强调多尺度,认为系统中人与自然的耦合以不同速率在嵌套空间中发生;跨尺度连接表述详细 | 人与自然的多层次耦合关系;考虑背景与 系统内部交互作用 |
社会生态 系统[ | 聚焦公共池塘资源,识别影响社会生态系统中自组织结构可持续发展的重要变量 | 资源系统、资源单位、管理系统和行动者,及其相互作用与结果构成系统主体,相关生态系统及社会、经济和政治环境构成背景组件 | 通过制度分析与发展(IAD)框架探索变量之间的连接,连接有正负之分;连接间的非线性或随机关系及反馈作用均有所涉及 | 强调多尺度,认为理解复杂系统的多层嵌套结构和时间周期是识别可持续与否的重要前提;跨尺度连接有所涉及 | 社会、经济、政治和生态状况 |
[1] | Vitousek P M, Mooney H A, Lubchenco J , et al. Human domination of earth’s ecosystems[J]. Science, 1997,277(5325):494-499. |
[2] | Sachs J D . Sustainable development[J]. Science, 2004,304(5671):649-649. |
[3] | Liu J G, Dietz T, Carpenter S R , et al. Complexity of coupled human and natural systems[J]. Science, 2007,317(5844):1513-1516. |
[4] | Levin S, Xepapadeas T, Crépin A-S , et al. Social-ecological systems as complex adaptive systems: Modeling and policy implications[J]. Environment and Development Economics, 2013,18(2):111-132. |
[5] | Glaser M, Krause G, Ratter B , et al. Human/Nature interaction in the anthropocene potential of social-ecological systems analysis[J]. Gaia-Ecological Perspectives for Science and Society, 2008,17(1):77-80. |
[6] | Leslie H M, Basurto X, Nenadovic M , et al. Operationalizing the social-ecological systems framework to assess sustainability[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(19):5979-5984. |
[7] | Reyers B, Folke C, Moore M L , et al. Social-ecological systems insights for navigating the dynamics of the anthropocene[J]. Annual Review of Environment and Resources, 2018,43(1):267-289. |
[8] | Folke C, Carpenter S R, Walker B , et al. Resilience thinking: Integrating resilience, adaptability and transformability[J]. Ecology and Society, 2010,15(4):299-305. |
[9] | 黄晓军, 王博, 刘萌萌 , 等. 社会-生态系统恢复力研究进展: 基于CiteSpace的文献计量分析[J]. 生态学报, 2019,39(8):367-377. |
[ Huang X J, Wang B, Liu M M , et al. Research progress on socio-ecosystem resilience: A bibliometric analysis based on CiteSpace[J]. Acta Ecologica Sinica, 2019,39(8):367-377.] | |
[10] | 傅伯杰, 冷疏影, 宋长青 . 新时期地理学的特征与任务[J]. 地理科学, 2015,35(8):939-945. |
[ Fu B J, Leng S Y, Song C Q . The characteristics and tasks of geography in the New Era[J]. Scientia Geographica Sinica, 2015,35(8):939-945.] | |
[11] | Lv Y H, Fu B J, Feng X M , et al. A policy-driven large scale ecological restoration: Quantifying ecosystem services changes in the Loess Plateau of China[J]. PLoS One, 2012,7(2):e31782. |
[12] | Fu B J, Wang S, Liu Y , et al. Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China[J]. Annual Review of Earth and Planetary Sciences, 2017,45(1):223-243. |
[13] | Feng X M, Fu B J, Piao S L , et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits[J]. Nature Climate Change, 2016,6(11):1019-1022. |
[14] | Chen Y P, Wang K B, Lin Y S , et al. Balancing green and grain trade[J]. Nature Geoscience, 2015,8(10):739-741. |
[15] | Fischer J, Gardner T A, Bennett E M , et al. Advancing sustainability through mainstreaming a social-ecological systems perspective[J]. Current Opinion in Environmental Sustainability, 2015,14:144-149. |
[16] | Mace G M . Whose conservation?[J]. Science, 2014,345(6204):1558-1560. |
[17] | Liu J G, Mooney H, Hull V , et al. Systems integration for global sustainability[J]. Science, 2015, DOI: 10.1126/science.1258832. |
[18] | Ostrom E . A general framework for analyzing sustainability of social-ecological systems[J]. Science, 2009,325(5939):419-422. |
[19] | Berkes F, Folke C, Colding J. Linking Social and Ecological Systems: Management Practices and Social Mechanisms for Building Resilience[M]. Cambridge: Cambridge University Press, 2000. |
[20] | Guerrero A M, Bennett N J, Wilson K A , et al. Achieving the promise of integration in social-ecological research: A review and prospectus[J]. Ecology and Society, 2018, DOI: 10.5751/ES-10232-230338. |
[21] | Biggs R, Carpenter S R, Brock W A . Turning back from the brink: Detecting an impending regime shift in time to avert it[J]. Proceedings of the National academy of Sciences, 2009,106(3):826-831. |
[22] | Cinner J E, Huchery C, MacNeil M A, et al. Bright spots among the world’s coral reefs[J]. Nature, 2016,535(7612):416-419. |
[23] | Kajikawa Y, Tacoa F, Yamaguchi K . Sustainability science: The changing landscape of sustainability research[J]. Sustainability Science, 2014,9(4):431-438. |
[24] | Folke C . Resilience: The emergence of a perspective for social-ecological systems analyses[J]. Global Environmental Change, 2006,16(3):253-267. |
[25] | Walker B, Carpenter S R, Anderies J M , et al. Resilience management in social-ecological systems: A working hypojournal for a participatory approach[J]. Conservation Ecology, 2002,6(1):14-31. |
[26] | McGinnis M D, Ostrom E . Social-ecological system framework: Initial changes and continuing challenges[J]. Ecology and Society, 2014, DOI: 10.5751/es-06387-190230. |
[27] | Simone P, Nicola U, Kathryn L S , et al. Frontiers in socio-environmental research: Components, connections, scale, and context[J]. Ecology and Society, 2018, DOI: 10.5751/ES-10280-230323. |
[28] | Machlis G E, Force J E, Burch W R . The human ecosystem Part I: The human ecosystem as an organizing concept in ecosystem management[J]. Society & Natural Resources, 1997,10(4):347-367. |
[29] | Carpenter S, Walker B, Anderies J M , et al. From metaphor to measurement: Resilience of what to what?[J]. Ecosystems, 2001,4(8):765-781. |
[30] | Gunderson L H, Holling C S. Panarchy: Understanding Transformations in Human and Natural Systems[M]. Washington: Island Press, 2001. |
[31] | Holling C S . Understanding the complexity of economic, ecological, and social systems[J]. Ecosystems, 2001,4(5):390-405. |
[32] | de Groot R S, Wilson M A, Boumans R M J . A typology for the classification, description and valuation of ecosystem functions, goods and services[J]. Ecological Economics, 2002,41(3):393-408. |
[33] | Turner B L, Kasperson R E, Matson P A , et al. A framework for vulnerability analysis in sustainability science[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003,100(14):8074-8079. |
[34] | Liu J G, Dietz T, Carpenter S R , et al. Coupled human and natural systems[J]. Ambio, 2007,36(8):639-649. |
[35] | Ostrom E . A diagnostic approach for going beyond panaceas[J]. Proceedings of the National Academy of Sciences, 2007,104(39):15181-15187. |
[36] | Angeler D G, Allen C R . Quantifying resilience[J]. Journal of Applied Ecology, 2016,53(3):617-624. |
[37] | Walker B H, Meyers J A . Thresholds in ecological and social-ecological systems: A developing database[J]. Ecology and Society, 2004, DOI: 10.5751/ES-00664-090203. |
[38] | Walker B, Hollin C S, Carpenter S R , et al. Resilience, adaptability and transformability in social-ecological systems[J]. Ecology and Society, 2004, DOI: 10.1890/04-0463. |
[39] | Walker B, Salt D. Resilience Thinking: Sustaining Ecosystems and People in a Changing World[M]. Washington: Island Press, 2012. |
[40] | Darnhofer I, Fairweather J, Moller H . Assessing a farm’s sustainability: Insights from resilience thinking[J]. International Journal of Agricultural Sustainability, 2010,8(3):186-198. |
[41] | Carpenter S R, Westley F, Turner M G . Surrogates for resilience of social-ecological systems[J]. Ecosystems, 2005,8:941-944. |
[42] | Homayounfar M, Muneepeerakul R, Anderies J M , et al. Linking resilience and robustness and uncovering their trade-offs in coupled infrastructure systems[J]. Earth System Dynamics, 2018,9(4):1159-1168. |
[43] | Meyer K, Hoyer-Leitzel A, Iams S , et al. Quantifying resilience to recurrent ecosystem disturbances using flow-kick dynamics[J]. Nature Sustainability, 2018,1(11):671-678. |
[44] | Lade S J, Tavoni A, Levin S A , et al. Regime shifts in a social-ecological system[J]. Theoretical Ecology, 2013,6(3):359-372. |
[45] | Walker B, Pearson L, Harris M , et al. Incorporating resilience in the assessment of inclusive wealth: An example from South East Australia[J]. Environmental and Resource Economics, 2010,45(2):183-202. |
[46] | Filatova T, Polhill J G, van Ewijk S, . Regime shifts in coupled socio-environmental systems: Review of modelling challenges and approaches[J]. Environmental Modelling & Software, 2016,75:333-347. |
[47] | Gunderson L H, Cosens B A, Chaffin B C , et al. Regime shifts and panarchies in regional scale social-ecological water systems[J]. Ecology and Society, 2017,22(1):1-31. |
[48] | Biggs R, Peterson G D, Rocha J C . The regime shifts database: A framework for analyzing regime shifts in social-ecological systems[J]. Ecology and Society, 2018, DOI: 10.5751/ES-10264-230309. |
[49] | Rocha J C, Peterson G D, Bodin O , et al. Cascading regime shifts within and across scales[J]. Science, 2018,362(6421):1379-1383. |
[50] | Hull V, Liu J G . Telecoupling: A new frontier for global sustainability[J]. Ecology and Society, 2018, DOI: 10.5751/ES-10494-230441. |
[51] | Rockström J, Steffen W L, Noone K , et al. A safe operating space for humanity[J]. Nature, 2009,461(7263):472-475. |
[52] | Rockström J, Steffen W L, Noone K , et al. Planetary boundaries: Exploring the safe operating space for humanity[J]. Ecology and Society, 2009, DOI: 10.5751/ES-03180-140232. |
[53] | Bodin Ö, Crona B, Thyresson M , et al. Conservation success as a function of good alignment of social and ecological structures and processes[J]. Conservation Biology, 2014,28(5):1371-1379. |
[54] | Bodin Ö, Alexander S M, Baggio J , et al. Improving network approaches to the study of complex social-ecological interdependencies[J]. Nature Sustainability, 2019,2(7):551-559. |
[55] | Chaffin B C, Garmestani A S, Gunderson L H , et al. Transformative environmental governance[J]. Annual Review of Environment and Resources, 2016,41(1):399-423. |
[56] | Ansell C, Gash A . Collaborative governance in theory and practice[J]. Journal of Public Administration Research and Theory, 2008,18(4):543-571. |
[57] | Liu J G, Hull V, Batistella M , et al. Framing sustainability in a telecoupled world[J]. Ecology and Society, 2013,36(23):7870-7885. |
[58] | Ellis E C . Sharing the land between nature and people[J]. Science, 2019,364(6447):1226-1228. |
[59] | Lambin E F, Meyfroidt P . Land use transitions: Socio-ecological feedback versus socio-economic change[J]. Land Use Policy, 2010,27(2):108-118. |
[60] | 傅伯杰 . 新时代自然地理学发展的思考[J]. 地理科学进展, 2018,37(1):1-7. |
[ Fu B J . Thoughts on the recent development of physical geography[J]. Progress in Geography, 2018,37(1):1-7.] | |
[61] | Gao L, Bryan B A . Finding pathways to national-scale land-sector sustainability[J]. Nature, 2017,544(7649):217-222. |
[62] | Kates R W . What kind of a science is sustainability science?[J]. Proceedings of the National academy of Sciences, 2011,108(49):19449-19450. |
[63] | Wang S, Fu B J, Piao S L , et al. Reduced sediment transport in the Yellow River due to anthropogenic changes[J]. Nature Geoscience, 2015,9(1):38-41. |
[64] | Feng X M, Fu B J, Lu N , et al. How ecological restoration alters ecosystem services: An analysis of carbon sequestration in China’s Loess Plateau[J]. Scientific Reports, 2013, DOI: 10.1038/srep02846. |
[65] | Fu B J, Liu Y, Lv Y H , et al. Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China[J]. Ecological Complexity, 2011,8(4):284-293. |
[66] | Feng Q, Zhao W W, Fu B J , et al. Ecosystem service trade-offs and their influencing factors: A case study in the Loess Plateau of China[J]. Science of the Total Environment, 2017, 607-608:1250-1263. |
[67] | Lv N, Fu B J, Jin T T , et al. Trade-off analyses of multiple ecosystem services by plantations along a precipitation gradient across Loess Plateau landscapes[J]. Landscape Ecology, 2014,29(10):1697-1708. |
[68] | Hu H T, Fu B J, Lu Y H , et al. SAORES: A spatially explicit assessment and optimization tool for regional ecosystem services[J]. Landscape Ecology, 2014,30(3):547-560. |
[69] | Wu X T, Wang S, Fu B J , et al. Socio-ecological changes on the Loess Plateau of China after Grain to Green Program[J]. Science of the Total Environment, 2019,678:565-573. |
[70] | Wu X T, Wang S, Fu B J , et al. Pathways from payments for ecosystem services program to socioeconomic outcomes[J]. Ecosystem Services, 2019, DOI: 10.1016/j.ecoser.2019.101005. |
[71] | Bryan B A, Gao L, Ye Y Q , et al. China’s response to a national land-system sustainability emergency[J]. Nature, 2018,559(7713):193-204. |
[72] | Yang H B, Yang W, Zhang J D , et al. Revealing pathways from payments for ecosystem services to socioeconomic outcomes[J]. Science Advances, 2018, DOI: 10.1126/sciadv.aao6652. |
[73] | Cao S X . Impact of China’s large-scale ecological restoration program on the environment and society in arid and semiarid areas of China: Achievements, problems, synjournal, and applications[J]. Critical Reviews in Environmental Science and Technology, 2011,41(4):317-335. |
[74] | Wang Y Q, Shao M A, Zhu Y J , et al. Impacts of land use and plant characteristics on dried soil layers in different climatic regions on the Loess Plateau of China[J]. Agricultural and Forest Meteorology, 2011,151(4):437-448. |
[1] | YANG Kaiyue, SONG Yongyong, XUE Dongqian. Spatiotemporal change of rural settlement land in the Loess Plateau and influencing factors [J]. Resources Science, 2020, 42(7): 1311-1324. |
[2] | Haijiang CHEN, Wei SI, Zeqi LIU, Chaozhu LI, Yanyan ZHANG. Polycentric governance of government-led ecological compensation: Based on the perspective of farmers’ social network [J]. Resources Science, 2020, 42(5): 812-824. |
[3] | LIU Li, CHU Liqi, JIANG Zhide. Influence of technology cognition and risk perception on the willingness to adopt soil and water conservation tillage technologies and its intergenerational differences [J]. Resources Science, 2020, 42(4): 763-775. |
[4] | YANG Lei, FENG Qingyu, CHEN Liding. Ecosystem services of soil and water conservation measures on the Loess Plateau [J]. Resources Science, 2020, 42(1): 87-95. |
[5] | MENG Lijun,HUANG Can,CHEN Xin,JIANG Li,ZHANG Guoliang,HAO Jinmin,AN Pingli. Evaluation of cultivated land system resilience of Quzhou County [J]. Resources Science, 2019, 41(10): 1949-1958. |
[6] | Liqun MA, Fen QIN, Jiulin SUN, Hao WANG, Haoming XIA. Diurnal asymmetry of temperature and its effect on NDVI in Loess Plateau [J]. Resources Science, 2018, 40(8): 1684-1692. |
[7] | Zhiqi YANG, Jinwei DONG, Xinliang XU, Guosong ZHAO, Wei CHEN, Yan ZHOU. Spatiotemporal pattern of forest fragmentation in the Loess Plateau [J]. Resources Science, 2018, 40(6): 1246-1255. |
[8] | Hui JIA, Hai CHEN, Nanzhao MAO, Xia NIE. Landscape sustainable development in highly sensitive ecological fragile areas [J]. Resources Science, 2018, 40(6): 1277-1286. |
[9] | Huimin YAN, Wenpeng DU, Zhiming FENG, Yanzhao YANG, Xiaoyu SONG. The definition and accounting approaches towards natural resource liabilities [J]. Resources Science, 2018, 40(5): 888-898. |
[10] | Wei LI, Caixia XUE, Shunbo YAO, Ruixiang ZHU. Conservation tillage,cropping systems and land productivity for households on the Loess Plateau [J]. Resources Science, 2017, 39(7): 1259-1271. |
[11] | Yu LIU, Jiakun TENG. Assessing the delivery of soil erosion control benefits at the watershed level following the WATEM/SEDEM concept [J]. Resources Science, 2017, 39(5): 860-870. |
[12] | Weijing MA, Bin LIU, Dewei YANG, Qinghai GUO. Dynamic evaluation of natural capital using the Three-Dimension Ecological Footprint Model:the Jiulong River Basin in Southeast China [J]. Resources Science, 2017, 39(5): 871-880. |
[13] | Yongmao LIU, Shuzhuo LI. Measuring household livelihood diversification resilience:a case study in Ankang City of Shaanxi Province [J]. Resources Science, 2017, 39(4): 766-781. |
[14] | SHI Yuzhong, LI Wenlong, LU Daming, WANG Ziqiao, YANG Xinjun. Spatio-temporal analysis of drought vulnerability on the Loess Plateau of China at town level [J]. Resources Science, 2017, 39(11): 2130-2140. |
[15] | XIANG Baohui, ZENG Yuxi. Ecotourism construction and operating mechanism in the Sanjiangyuan National Park System Pilot Area,China [J]. Resources Science, 2017, 39(1): 50-60. |
|