Resources Science ›› 2019, Vol. 41 ›› Issue (8): 1450-1461.doi: 10.18402/resci.2019.08.06
Previous Articles Next Articles
Ruomei WANG1,Hailiang MA2(),Jin WANG3
Received:
2018-09-27
Revised:
2019-05-29
Online:
2019-08-28
Published:
2019-08-21
Contact:
Hailiang MA
E-mail:hilima@vip.sina.com
Ruomei WANG,Hailiang MA,Jin WANG. Spatial and temporal differences of agricultural carbon emissions and impact factors of the Yangtze River Economic Belt based on a water-land perspective[J].Resources Science, 2019, 41(8): 1450-1461.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 2
Matching degree of water and land (MDWL) in the Yangtze River Economic Belt, 2009-2016 (106 m3/km2)"
2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | |
---|---|---|---|---|---|---|---|---|
上海 | 0.2935 | 0.2595 | 0.1461 | 0.2710 | 0.1968 | 0.3446 | 0.4653 | 0.4426 |
江苏 | 0.4742 | 0.4598 | 0.5936 | 0.4502 | 0.3240 | 0.4397 | 0.6181 | 0.7609 |
浙江 | 2.3060 | 3.2863 | 1.7434 | 3.3633 | 2.1824 | 2.6196 | 3.2367 | 2.9973 |
安徽 | 0.7233 | 0.8903 | 0.5847 | 0.6431 | 0.5450 | 0.6959 | 0.8491 | 1.1578 |
江西 | 2.4616 | 4.6462 | 2.1978 | 4.5257 | 3.0600 | 3.4391 | 4.0699 | 4.5281 |
湖北 | 0.8233 | 1.1468 | 0.6851 | 0.7528 | 0.8183 | 0.9455 | 1.0141 | 1.3874 |
湖南 | 1.9885 | 2.6329 | 1.5276 | 2.7421 | 2.2388 | 2.6119 | 2.7322 | 3.1265 |
重庆 | 0.4169 | 0.4365 | 0.5715 | 0.5906 | 0.5654 | 0.7723 | 0.6130 | 0.8354 |
四川 | 1.9202 | 2.1179 | 1.8291 | 2.5470 | 2.1089 | 2.3310 | 1.9469 | 2.0278 |
贵州 | 1.0094 | 1.0334 | 0.7111 | 1.0132 | 0.8756 | 1.4127 | 1.4161 | 1.3233 |
云南 | 1.7115 | 2.0110 | 1.5543 | 1.8549 | 1.8818 | 1.9231 | 2.1011 | 2.3568 |
长江经济带 | 1.2767 | 1.6286 | 1.1233 | 1.5941 | 1.3080 | 1.5238 | 1.5955 | 1.7788 |
Table 3
Total and provincial agricultural carbon emissions in the Yangtze River Economic Belt, 2009-2016 (104 t)"
2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | |
---|---|---|---|---|---|---|---|---|
上海 | 24.1105 | 24.8596 | 25.4632 | 26.7494 | 28.4071 | 27.2042 | 26.4290 | 25.9675 |
江苏 | 160.8368 | 183.3240 | 200.1078 | 226.6756 | 175.1711 | 184.7212 | 205.7262 | 201.4956 |
浙江 | 161.8361 | 173.6265 | 177.6728 | 180.8789 | 185.5606 | 187.0194 | 190.7356 | 192.6016 |
安徽 | 88.2056 | 91.4322 | 98.7334 | 98.7212 | 106.9616 | 107.3732 | 100.9628 | 107.0222 |
江西 | 51.1971 | 55.6337 | 55.1314 | 50.4753 | 52.8759 | 61.3779 | 56.3126 | 58.9359 |
湖北 | 196.9057 | 185.2817 | 218.8486 | 228.1117 | 231.9927 | 241.4533 | 238.2608 | 190.3076 |
湖南 | 186.9928 | 179.4227 | 203.2128 | 219.4933 | 234.3851 | 233.5892 | 242.7312 | 250.4563 |
四川 | 122.1268 | 119.7062 | 116.9934 | 135.7664 | 140.1304 | 139.5349 | 136.5577 | 125.0845 |
贵州 | 86.1664 | 74.0387 | 59.3640 | 68.2037 | 80.7622 | 87.9281 | 92.5454 | 122.1312 |
云南 | 130.3619 | 132.1439 | 120.2034 | 122.3277 | 120.5847 | 130.2608 | 147.1418 | 133.2822 |
长江经济带 | 1208.7398 | 1219.4692 | 1275.7309 | 1357.4032 | 1356.8314 | 1400.4623 | 1437.4032 | 1407.2846 |
Table 4
Change and impact factor decomposition of agricultural carbon emissions in the Yangtze River Economic Belt (104 t)"
年份 | 碳排放贡献值 | |||||
---|---|---|---|---|---|---|
ΔC | ΔCi | ΔCg | ΔCw | ΔCl | ΔCp | |
2009—2010 | 10.7294 | -92.5900 | 126.0444 | -24.2491 | -2.5846 | 4.1088 |
2010—2011 | 56.2617 | -268.6245 | 300.9216 | 24.7065 | -5.4739 | 4.7321 |
2011—2012 | 81.6723 | -50.7264 | 129.0541 | 4.4425 | -6.7912 | 5.6934 |
2012—2013 | -0.5718 | -95.1455 | 61.2507 | 33.6412 | -7.3197 | 7.0016 |
2013—2014 | 43.6309 | -38.0369 | 106.5908 | -22.8658 | -8.1383 | 6.0812 |
2014—2015 | 36.9409 | -54.2658 | 101.1349 | -9.6784 | -8.3405 | 8.0906 |
2015—2016 | -30.1186 | -128.4191 | 129.9518 | -30.6589 | -9.6653 | 8.6729 |
2009—2016 | 198.5449 | -671.6192 | 895.9355 | -22.1500 | -46.5386 | 42.9172 |
Table 5
Impact factor decomposition of agricultural carbon emissions in various provinces of the Yangtze River Economic Belt (104 t)"
省份 | 碳排放 | 贡献值 | |||||||
---|---|---|---|---|---|---|---|---|---|
2009 | 2016 | ΔC | ΔCi | ΔCg | ΔCw | ΔCl | ΔCp | ||
上海 | 24.1105 | 25.9675 | 1.8570 | 1.9341 | 3.5779 | -3.7734 | -2.1535 | 2.2719 | |
江苏 | 160.8368 | 201.4956 | 40.6588 | -76.2217 | 135.4263 | -16.9273 | -5.9322 | 4.3137 | |
浙江 | 161.8361 | 192.6016 | 30.7655 | -65.0790 | 128.2195 | -31.3040 | -11.2904 | 10.2194 | |
安徽 | 88.2056 | 107.0222 | 18.8166 | -38.4313 | 62.3981 | -6.1588 | -0.0177 | 1.0262 | |
江西 | 51.1971 | 58.9359 | 7.7388 | -24.1499 | 32.9516 | -0.9399 | -2.0726 | 1.9497 | |
湖北 | 196.9057 | 190.3076 | -6.5981 | -150.7106 | 160.9251 | -13.9659 | -8.3519 | 5.5052 | |
湖南 | 186.9928 | 250.4563 | 63.4635 | -74.9749 | 131.8267 | 5.8934 | -12.9462 | 13.6645 | |
四川 | 122.1268 | 125.0845 | 2.9577 | -68.8414 | 43.1437 | 28.4184 | -0.9203 | 1.1573 | |
贵州 | 86.1664 | 122.1312 | 35.9647 | -94.1811 | 119.3638 | 11.5146 | -1.2559 | 0.5234 | |
云南 | 130.3619 | 133.2822 | 2.9203 | -94.8947 | 95.6165 | 2.9628 | -6.4092 | 5.6449 |
[1] | Le Quéré C, Andrew R M, Friedlingstein P , et al. Global carbon budget 2017[J]. Earth System Science Data, 2018,10:405-448. |
[2] | 王礼茂, 屈秋实, 牟初夫 , 等. 中国参与全球能源治理的总体思路与路径选择[J]. 资源科学, 2019,41(5):825-833. |
[ Wang L M, Qu Q S, Mou C F , et al. Strategic considerations and path selection for China’s participation in global energy governance[J]. Resources Science, 2019,41(5):825-833.] | |
[3] | 国务院. “十三五”节能减排综合工作方案[EB/OL]. ( 2017- 01- 05) [2018-09-27]. http://www.gov.cn/zhengce/content/2017-01/05/content_5156789.htm. |
[ The State Council. The Comprehensive Work Plan on Energy Conservation and Emissions Reduction for the 13th Five-Year Plan Period[EB/OL]. ( 2017- 01- 05) [2018-09-27]. http://www.gov.cn/zhengce/content/2017-01/05/content_5156789.htm.] | |
[4] | 吴传清, 宋子逸 . 长江经济带农业绿色发展报告[M]. 北京: 社会科学文献出版社, 2018. |
[ Wu C Q, Song Z Y. Report on Agricultural Green Development in the Yangtze Economic Belt[M]. Beijing: Social Sciences Academic Press, 2018.] | |
[5] | Chen J D, Cheng S L, Song M L . Changes in energy-related carbon dioxide emissions of the agricultural sector in China from 2005 to 2013[J]. Renewable and Sustainable Energy Reviews, 2018,94:748-761. |
[6] | 吴金凤, 王秀红 . 不同农业经济发展水平下的碳排放对比分析: 以盐池县和平度市为例[J]. 资源科学, 2017,39(10):1909-1917. |
[ Wu J F, Wang X H . Comparative analysis of agricultural carbon emissions at different agricultural economic development levels in Yanchi County and Pingdu City[J]. Resources Science, 2017,39(10):1909-1917.] | |
[7] | 吴贤荣, 张俊飚, 田云 , 等. 中国省域农业碳排放: 测算、效率变动及影响因素研究: 基于DEA-Malmquist指数分解方法与Tobit模型运用[J]. 资源科学, 2014,36(1):129-138. |
[ Wu X R, Zhang J B, Tian Y , et al. Provincial agricultural carbon emissions in China: Calculation, performance change and influencing factors[J]. Resources Science, 2014,36(1):129-138.] | |
[8] | Mohtar R H, Lawford R . Present and future of the water-energy-food nexus and the role of the community of practice[J]. Journal of Environmental Studies and Sciences, 2016,6(1):192-199. |
[9] | Vandone D, Peri M, Baldi L . The impact of energy and agriculture prices on the stock performance of the water industry[J]. Water Resources & Economics, 2018,23:14-27. |
[10] | Li M, Fu Q, Singh V P , et al. An optimal modelling approach for managing agricultural water-energy-food nexus under uncertainty[J]. Science of the Total Environment, 2019,651:1416-1434. |
[11] | Silalertruksa T, Gheewala S H . Land-water-energy nexus of sugarcane production in Thailand[J]. Journal of Cleaner Production, 2018,182:521-528. |
[12] | 赵荣钦, 李志萍, 韩宇平 , 等. 区域“水-土-能-碳”耦合作用机制分析[J]. 地理学报, 2016,71(9):1613-1628. |
[ Zhao R Q, Li Z P, Han Y P , et al. The coupling interaction mechanism of regional water-land-energy-carbon system[J]. Acta Geographica Sinica, 2016,71(9):1613-1628.] | |
[13] | Zhao R Q, Liu Y, Tian M M , et al. Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus[J]. Land Use Policy, 2018,72:480-492. |
[14] | Eggleston H S, Buendia L, Miwa T , et al. 2006 IPCC Guidelines for National Greenhouse Gas Inventories[R]. Japan: Institute for Global Environmental Strategies, 2006. |
[15] | 中华人民共和国国家统计局. 中国能源统计年鉴[M]. 北京: 中国统计出版社, 2010- 2017. |
[ National Bureau of Statistics of the People’s Republic of China. China Energy Statistical Yearbook[M]. Beijing: China Statistics Press, 2010- 2017.] | |
[16] | 蒋金荷 . 中国碳排放量测算及影响因素分析[J]. 资源科学, 2011,33(4):597-604. |
[ Jiang J H . An evaluation and decomposition analysis of carbon emissions in China[J]. Resources Science, 2011,33(4):597-604.] | |
[17] | 刘彦随, 甘红, 张富刚 . 中国东北地区农业水土资源匹配格局[J]. 地理学报, 2006,61(8):847-854. |
[ Liu Y S, Gan H, Zhang F G . Analysis of the matching patterns of land and water resources in Northeast China[J]. Acta Geographica Sinica, 2006,61(8):847-854.] | |
[18] | Yoichi K . Impact of Carbon Dioxide Emission on GNP Growth: Interpretation of Proposed Scenarios[R]. Paris: Presentation to the Energy and Industry Subgroup, Response Strategies Working Group, 1989. |
[19] | 黎孔清, 陈俭军, 马豆豆 . 基于STIRPAT和GM(1, 1)模型的湖南省农地投入碳排放增长机理及趋势预测[J]. 长江流域资源与环境, 2018,27(2):345-352. |
[ Li K Q, Chen J J, Ma D D . Growth mechanism and trend forecast of carbon emission from farmland inputs in Hunan province based on Stirpat and GM (1, 1) model[J]. Resources and Environment in the Yangtze Basin, 2018,27(2):345-352.] | |
[20] | 魏玮, 文长存, 崔琦 , 等. 农业技术进步对农业能源使用与碳排放的影响: 基于GTAP-E模型分析[J]. 农业技术经济, 2018, ( 2):30-40. |
[ Wei W, Wen C C, Cui Q , et al. The impacts of technological advance on agricultural energy use and carbon emission: An analysis based on GTAP-E model[J]. Journal of Agrotechnical Economics, 2018, ( 2):30-40.] | |
[21] | 程郁泰, 张纳军 . 碳排放IDA模型的算法比较及应用研究[J]. 统计与信息论坛, 2017,32(5):10-17. |
[ Cheng Y T, Zhang N J . Algorithm comparison and application of carbon emission IDA model[J]. Statistics & Information Forum, 2017,32(5):10-17.] | |
[22] | Ang B W . LMDI decomposition approach: A guide for implementation[J]. Energy Policy, 2015,86:233-238. |
[23] | Li J X, Chen Y N, Li Z , et al. Quantitative analysis of the impact factors of conventional energy carbon emissions in Kazakhstan based on LMDI decomposition and STIRPAT model[J]. Journal of Geographical Sciences, 2018,28(7):1001-1019. |
[24] | 刘博文, 张贤, 杨琳 . 基于LMDI的区域产业碳排放脱钩努力研究[J]. 中国人口·资源与环境, 2018,28(4):78-86. |
[ Liu B W, Zhang X, Yang L . Decoupling efforts of regional industrial development on CO2 emissions in China based on LMDI analysis[J]. China Population, Resources and Environment, 2018,28(4):78-86.] | |
[25] | 中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2010- 2017. |
[ National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook[M]. Beijing: China Statistics Press, 2010- 2017.] | |
[26] | 国务院. “十二五”节能减排综合性工作方案[EB/OL]. ( 2011- 09- 07) [2018-09-27]. http://www.gov.cn/zwgk/2011-09/07/content_1941731.htm. |
[ The State Council. The Comprehensive Work Plan for Energy Conservation and Emissions Reduction for the 12th Five-Year Plan Period[EB/OL]. ( 2011- 09- 07) [2018-09-27]. http://www.gov.cn/zwgk/2011-09/07/content_1941731.htm.] | |
[27] | 国务院办公厅. 2014-2015年节能减排低碳发展行动方案[EB/OL]. ( 2014- 05- 26) [2018-09-27]. http://www.gov.cn/zhengce/content/2014-05/26/content_8824.htm. |
[ General Office of the State Council. Action Plan for Energy Conservation and Emissions Reduction and Low Carbon Development in 2014-2015[EB/OL]. ( 2014- 05- 26) [2018-09-27]. http://www.gov.cn/zhengce/content/2014-05/26/content_8824.htm.] | |
[28] | Zhang X Q, Pu C, Zhao X , et al. Tillage effects on carbon footprint and ecosystem services of climate regulation in a winter wheat-summer maize cropping system of the North China Plain[J]. Ecological Indicators, 2016,67:821-829. |
|