资源科学 ›› 2020, Vol. 42 ›› Issue (11): 2119-2131.doi: 10.18402/resci.2020.11.06
黄其威1,2(), 刘诗奇1, 王平1,2(
), 王田野3, 于静洁1,2, 陈晓龙4, 杨林生2,5
收稿日期:
2020-09-02
修回日期:
2020-10-06
出版日期:
2020-11-25
发布日期:
2021-01-25
通讯作者:
王平
作者简介:
黄其威,男,河南信阳人,硕士生,研究方向为水文水资源。E-mail: huangqw. 基金资助:
HUANG Qiwei1,2(), LIU Shiqi1, WANG Ping1,2(
), WANG Tianye3, YU Jingjie1,2, CHEN Xiaolong4, YANG Linsheng2,5
Received:
2020-09-02
Revised:
2020-10-06
Online:
2020-11-25
Published:
2021-01-25
Contact:
WANG Ping
摘要:
降水是环北极地区水资源的主要来源。定量分析气温与降水时空变化是深入理解环北极地区陆地水循环过程的基础。本文选取鄂毕河、叶尼塞河、勒拿河流域为对象,利用167个俄罗斯国家气象站点1936—2018年的气温与降水观测数据,结合线性趋势分析和Mann-Kendall突变点检验,揭示环北极典型流域气温与降水的时空变化特征。结果表明:①鄂毕河、叶尼塞河和勒拿河流域多年平均气温为0.06 ℃、-2.98 ℃、-7.41 ℃,年均增温速率分别为0.27 ℃/10 a,0.22 ℃/10 a,0.15 ℃/10 a。年内极端最低温(TNn)上升尤为明显,约为年均增温速率的1.3倍,春、冬季增温速率大于夏、秋两季;②鄂毕河、叶尼塞河和勒拿河流域多年平均降水量为496 mm、428 mm、369 mm;年降水量显著增加,其中叶尼塞河流域增速较慢(3.36 mm/10 a),而鄂毕河(13.02 mm/10 a)和勒拿河(9.59 mm/10 a)流域增速较快,降水增加集中在春、秋、冬三季;③在空间上,增温较快的区域集中在西伯利亚高原和山地,最大增温速率达0.60 ℃/10 a,而平原地区普遍偏低;降水的空间差异大,西伯利亚南部高海拔地区(>1100 m)年降水量达1000 mm左右,北部低海拔地区普遍为300~ 600 mm。上述观测数据指示,环北极流域正在变暖变湿,且空间差异大,可能与“北极放大”及流域下垫面条件有关。
黄其威, 刘诗奇, 王平, 王田野, 于静洁, 陈晓龙, 杨林生. 1936—2018年环北极典型流域气温与降水时空变化[J]. 资源科学, 2020, 42(11): 2119-2131.
HUANG Qiwei, LIU Shiqi, WANG Ping, WANG Tianye, YU Jingjie, CHEN Xiaolong, YANG Linsheng. Spatiotemporal variability of temperature and precipitation in typical Pan-Arctic basins, 1936-2018[J]. Resources Science, 2020, 42(11): 2119-2131.
表1
1936—2018年鄂毕河、叶尼塞河和勒拿河流域多年平均气温、降水特征统计表"
流域 | 时间段 | 温度 | 降水 | |||||
---|---|---|---|---|---|---|---|---|
平均值/ ℃ | 方差/ ℃ | 增速/ (℃/10 a) | 平均值/ mm | 方差/ mm | 增速/ (mm/10 a) | |||
鄂毕河 | 整年 | 0.06 | 1.06 | 0.27** | 496 | 53 | 13.02** | |
春季 | 0.49 | 1.77 | 0.39** | 96 | 18 | 4.14** | ||
夏季 | 16.10 | 0.84 | 0.17** | 204 | 24 | 0.15* | ||
秋季 | 0.20 | 1.45 | 0.21** | 129 | 18 | 3.96** | ||
冬季 | -16.87 | 2.42 | 0.30** | 66 | 18 | 4.68** | ||
叶尼塞河 | 整年 | -2.98 | 1.04 | 0.22** | 428 | 29 | 3.36* | |
春季 | -2.30 | 1.63 | 0.31** | 69 | 9 | 1.89** | ||
夏季 | 14.91 | 0.83 | 0.17** | 210 | 24 | -3.21** | ||
秋季 | -2.77 | 1.34 | 0.16** | 102 | 12 | 1.65** | ||
冬季 | -22.17 | 2.33 | 0.27* | 48 | 9 | 2.16** | ||
勒拿河 | 整年 | -7.41 | 0.97 | 0.15** | 369 | 38 | 9.59** | |
春季 | -5.76 | 1.69 | 0.31** | 54 | 12 | 3.00** | ||
夏季 | 14.73 | 0.79 | 0.10** | 198 | 27 | 2.10* | ||
秋季 | -7.70 | 1.31 | 0.05* | 87 | 12 | 3.21** | ||
冬季 | -30.91 | 1.99 | 0.20* | 33 | 6 | 1.26** |
[1] |
Post E, Alley R B, Christensen T R, et al. The polar regions in a 2°C warmer world[J]. Science Advances, 2019,5(12): eaaw9883.
doi: 10.1126/sciadv.aay0764 pmid: 31976371 |
[2] |
Bowen J C, Ward C P, Kling G W, et al. Arctic amplification of global warming strengthened by sunlight oxidation of permafrost carbon to CO2[J]. Geophysical Research Letters, 2020, DOI: 10.1029/2020GL087085.
pmid: 32999517 |
[3] | Serreze M C, Barry R G. Processes and impacts of Arctic amplification: A research synjournal[J]. Global and Planetary Change, 2011,77(1-2):85-96. |
[4] | Abram N, Adler C, Bindoff N L, et al. Summary for Policymakers[A]. Pörtner H O, Roberts D C, Masson-Delmotte V, et al. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate[M]. Cambridge: Cambridge University Press, 2019. |
[5] |
Bintanja R, Krikken F. Magnitude and pattern of Arctic warming governed by the seasonality of radiative forcing[J]. Scientific Reports, 2016, DOI: 10.1038/srep38287.
doi: 10.1038/s41598-020-78881-3 pmid: 33319843 |
[6] |
Duncan B N, Ott L E, Abshire J B, et al. Space-based observations for understanding changes in the Arctic-Boreal Zone[J]. Reviews of Geophysics, 2020, DOI: 10.1029/2019RG000652.
doi: 10.1029/95rg00346 pmid: 17654788 |
[7] | 效存德, 苏勃, 窦挺峰, 等. 极地系统变化及其影响与适应新认识[J]. 气候变化研究进展, 2020,16(2):153-162. |
[ Xiao C D, Su B, Dou T F, et al. Interpretation of IPCC SROCC on polar system changes and their impacts and adaptations[J]. Climate Change Research, 2020,16(2):153-162.] | |
[8] |
Berner L T, Beck P S, Bunn A G, et al. Plant response to climate change along the forest-tundra ecotone in northeastern Siberia[J]. Global Change Biology, 2013,19(11):3449-3462.
doi: 10.1111/gcb.12304 pmid: 23813896 |
[9] |
Cohen J, Zhang X D, Francis J, et al. Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather[J]. Nature Climate Change, 2020,10(1):20-29.
doi: 10.1038/s41558-019-0662-y |
[10] |
Dai A G, Song M R. Little influence of Arctic amplification on mid-latitude climate[J]. Nature Climate Change, 2020,10(3):231-237.
doi: 10.1038/s41558-020-0694-3 |
[11] |
Graham R M, Cohen L, Petty A A, et al. Increasing frequency and duration of Arctic winter warming events[J]. Geophysical Research Letters, 2017,44(13):6974-6983.
doi: 10.1002/2017GL073395 |
[12] | Lehnherr I, Vincent L S L, Martin S, et al. The world’s largest High Arctic lake responds rapidly to climate warming[J]. Nat Commun, 2018, DOI: 10.1038/s41467-018-03685-z. |
[13] | 秦大河, 姚檀栋, 丁永建, 等. 冰冻圈科学体系的建立及其意义[J]. 中国科学院院刊, 2020,35(4):394-406. |
[ Qin D H, Yao T D, Ding Y J, et al. Establishment and significance of the scientific system of Cryospheric science[J]. Bulletin of the Chinese Academy of Sciences, 2020,35(4):394-406.] | |
[14] | Song C L, Wang G X, Mao T X, et al. Linkage between permafrost distribution and river runoff changes across the Arctic and the Tibetan Plateau[J]. Science China: Earth Sciences, 2020,63(2):292-302. |
[15] |
Murphy M J, Porcelli D, Strandmann V P, et al. Tracing silicate weathering processes in the permafrost-dominated Lena River watershed using lithium isotopes[J]. Geochimica Et Cosmochimica Acta, 2019,245(15):154-171.
doi: 10.1016/j.gca.2018.10.024 |
[16] |
Serikova S, Pokrovsky O S, Laudon H, et al. High carbon emissions from thermokarst lakes of Western Siberia[J]. Nature Communications, 2019,10(1):1-7.
doi: 10.1038/s41467-018-07882-8 pmid: 30602773 |
[17] | Iijima Y, Fedorov A N, Park H, et al. Abrupt increases in soil temperatures following increased precipitation in a permafrost region, central Lena River basin, Russia[J]. Permafrost and Periglacial Processes, 2010,21(1):30-41. |
[18] | Romanovsky V E, Drozdov D S, Oberman N G, et al. Thermal state of permafrost in Russia[J]. Permafrost and Periglacial Processes, 2010,21(2):136-155. |
[19] | Cheng G D, Jin H J. Permafrost and groundwater on the Qinghai-Tibet Plateau and in northeast China[J]. Hydrogeology Journal, 2013,21(1):5-23. |
[20] | Fedorov A N, Ivanova R N, Park H, et al. Recent air temperature changes in the permafrost landscapes of northeastern Eurasia[J]. Polar Science, 2014,8(2):114-128. |
[21] |
Bintanja R, Andry O. Towards a rain-dominated Arctic[J]. Nature Climate Change, 2017,7(4):263-267.
doi: 10.1038/nclimate3240 |
[22] |
Bintanja R, Selten F M. Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat[J]. Nature, 2014,509(7501):479-482.
doi: 10.1038/nature13259 pmid: 24805239 |
[23] | Bintanja R. The impact of Arctic warming on increased rainfall[J]. Science Reports, 2018,8(1):1-6. |
[24] | Box J E, Colgan W T, Christensen T R, et al. Key indicators of Arctic climate change: 1971-2017[J]. Environmental Research Letters, 2019,14(4):045010. |
[25] | Dwyer J G, O’gorman P A. Changing duration and spatial extent of midlatitude precipitation extremes across different climates[J]. Geophysical Research Letters, 2017,44(11):5863-5871. |
[26] | 姜彤, 孙赫敏, 李修仓, 等. 气候变化对水文循环的影响[J]. 气象科技, 2020,46(3):289-300. |
[ Jiang T, Sun H M, Li X C, et al. Impact of climate change on water cycle[J]. Meteorological Monthly, 2020,46(3):289-300.] | |
[27] |
Held I M, Soden B J. Robust Responses of the hydrological cycle to global warming[J]. Journal of Climate, 2006,19(21):5686-5699.
doi: 10.1175/JCLI3990.1 |
[28] |
王平, 王田野, 王冠, 等. 西伯利亚淡水资源格局与合作开发潜力分析[J]. 资源科学, 2018,40(11):2186-2195.
doi: 10.18402/resci.2018.11.05 |
[ Wang P, Wang T Y, Wang G, et al. Spatial distribution and potential exploration of water resources in Siberia[J]. Resources Science, 2018,40(11):2186-2195.] | |
[29] |
Obu J, Westermann S, Bartsch A, et al. Northern Hemisphere permafrost map based on TTOP modelling for 2000-2016 at 1 km2 scale[J]. Earth-Science Reviews, 2019,193:299-316.
doi: 10.1016/j.earscirev.2019.04.023 |
[30] |
Biskaborn B K, Smith S L, Noetzli J, et al. Permafrost is warming at a global scale[J]. Nature Communications, 2019,10(1):1-11.
doi: 10.1038/s41467-018-07882-8 pmid: 30602773 |
[31] |
Stuecker M F, Bitz C M, Armour K C, et al. Polar amplification dominated by local forcing and feedbacks[J]. Nature Climate Change, 2018,8(12):1076-1081.
doi: 10.1038/s41558-018-0339-y |
[32] |
Screen J A, Simmonds I. The central role of diminishing sea ice in recent Arctic temperature amplification[J]. Nature, 2010,464(7293):1334-1337.
doi: 10.1038/nature09051 pmid: 20428168 |
[33] |
Taylor P C, Cai M, Hu A X, et al. A decomposition of feedback contributions to polar warming amplification[J]. Journal of Climate, 2013,26(18):7023-7043.
doi: 10.1175/JCLI-D-12-00696.1 |
[34] | Hernández-Henríquez M A, Déry S J, Derksen C. Polar amplification and elevation-dependence in trends of Northern Hemisphere snow cover extent, 1971-2014[J]. Environmental Research Letters, 2015,10(4):044010. |
[35] |
Goosse H, Kay J E, Armour K C, et al. Quantifying climate feedbacks in polar regions[J]. Nature Communications, 2018,9(1):1-13.
pmid: 29317637 |
[36] | Screen J A, Simmonds I. Declining summer snowfall in the Arctic: Causes, impacts and feedbacks[J]. Climate Dynamics, 2012,38(11-12):2243-2256. |
[37] | Berghuijs W R, Woods R A, Hrachowitz M. A precipitation shift from snow towards rain leads to a decrease in streamflow[J]. Nature Climate Change, 2014,4(7):583-586. |
[38] | Bintanja R, van Der Linden E . The changing seasonal climate in the Arctic[J]. Science Reports, 2013,3(1):1-8. |
[39] | Benetti M, Reverdin G, Lique C, et al. Composition of freshwater in the spring of 2014 on the southern Labrador shelf and slope[J]. Journal of Geophysical Research-Oceans, 2017,122(2):1102-1121. |
[40] | Alexander L V, Allen S K, Bindoff N L, et al. IPCC, 2013: Technical Summary[A]. Stocker T F, Qin D, Plattner G K, et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2013. |
[41] |
Boeke R C, Taylor P C. Seasonal energy exchange in sea ice retreat regions contributes to differences in projected Arctic warming[J]. Nature Communications, 2018,9(1):1-14.
doi: 10.1038/s41467-017-02088-w pmid: 29317637 |
[42] | Doyle S H, Hubbard A, van de Wal R S W, et al. Amplified melt and flow of the Greenland ice sheet driven by late-summer cyclonic rainfall[J]. Nature Geoscience, 2015,8(8):647-653. |
[43] |
Dai A, Luo D, Song M, et al. Arctic amplification is caused by sea-ice loss under increasing CO2[J]. Nature Communications, 2019,10(1):1-13.
pmid: 30602773 |
[44] | Berner J, Callaghan T V, Huntington H, et al. ACIA Arctic Climate Impact Assessment[M]. Cambridge: Cambridge University Press, 2005. |
[45] | Wu W J, Sun X H, Epstein H E, et al. Spatial heterogeneity of climate variation and vegetation response for Arctic and high-elevation regions from 2001-2018[J]. Environmental Research Communications, 2020,2(1):011007. |
[46] | Tamarin-Brodsky T, Hodges K, Hoskins B J, et al. Changes in Northern Hemisphere temperature variability shaped by regional warming patterns[J]. Nature Geoscience, 2020,13(6):414-421. |
[47] | Xu M, Kang S C, Wang X M, et al. Climate and hydrological changes in the Ob River Basin during 1936-2017[J]. Hydrological Processes, 2020,34(8):1821-1836. |
[48] | 王冠, 陈涵如, 王平, 等. 俄罗斯环北极地区地表径流变化及其原因[J]. 资源科学, 2020,42(2):346-357. |
[ Wang G, Chen H R, Wang P, et al. Surface runoff changes and their causes in the Russian pan-Arctic Region[J]. Resources Science, 2020,42(2):346-357.] | |
[49] | Grabs W E, Portmann F, Couet T D. Discharge observation networks in Arctic regions: Computation of the river runoff into the Arctic Ocean, its seasonality and variability[A]. E. L. Lewis, E. P. Jones, P. Lemke, et al. The Freshwater Budget of the Arctic Ocean[M]. Dordrecht: Springer Netherlands, 2000. |
[50] | Amon R M W, Rinehart A J, Duan S, et al. Dissolved organic matter sources in large Arctic rivers[J]. Geochimica Et Cosmochimica Acta, 2012,94(1):217-237. |
[51] | Magritsky D V, Frolova N L, Evstigneev V M, et al. Long-term changes of river water inflow into the seas of the Russian Arctic sector[J]. Polarforschung, 2018,87(2):177-194. |
[52] | Troeva E I, Isaev A P, Cherosov M, et al. The Far North: Plant Biodiversity and Ecology of Yakutia[M]. Berlin: Springer Science & Business Media, 2010. |
[53] | Zhang T, Barry R G, Knowles K, et al. Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere1[J]. Polar Geography, 1999,23(2):132-154. |
[54] | Brown J, Ferrians Jr O J, Heginbottom J A, et al. Circum-Arctic Map of Permafrost and Ground-Ice Conditions[R]. Reston: Circum- Pacific Map Series, 1997. |
[55] |
Berkowitz B, Klafter J, Metzler R, et al. Physical pictures of transport in heterogeneous media: Advection-dispersion, random-walk, and fractional derivative formulations[J]. Water Resources Research, 2002, DOI: 10.1029/2001WR001030.
doi: 10.1029/2018WR023623 pmid: 31007298 |
[56] | Alexandrov G A, Brovkin V A, Kleinen T. The influence of climate on peatland extent in Western Siberia since the Last Glacial Maximum[J]. Scientific Reports, 2016,6(1):24784. |
[57] |
Wild B, Andersson A, Broder L, et al. Rivers across the Siberian Arctic unearth the patterns of carbon release from thawing permafrost[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019,116(21):10280-10285.
doi: 10.1073/pnas.1811797116 pmid: 31061130 |
[58] | Carmack E C, Yamamoto-Kawai M, Haine T W N, et al. Freshwater and its role in the Arctic Marine System: Sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans[J]. Journal of Geophysical Research: Biogeosciences, 2016,121(3):675-717. |
[59] | Wrona F J, Johansson M, Culp J M, et al. Transitions in Arctic ecosystems: Ecological implications of a changing hydrological regime[J]. Journal of Geophysical Research-Biogeosciences, 2016,121(3):650-674. |
[60] | Bulygina O N, Razuvaev V N. Daily Temperature and Precipitation Data for 518 Russian Meteorological Stations[R]. Oak Ridge: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, 2012. |
[61] |
Labe Z, Peings Y, Magnusdottir G. Warm arctic, cold Siberia pattern: Role of full arctic amplification versus sea ice loss alone[J]. Geophysical Research Letters, 2020, DOI: 10.1029/2020GL088583.
doi: 10.1029/2020GL088561 pmid: 32999517 |
[62] | Ye H C, Fetzer E J, Wong S, et al. Increasing atmospheric water vapor and higher daily precipitation intensity over northern Eurasia[J]. Geophysical Research Letters, 2015,42(21):9404-9410. |
[63] | Frey K E, Smith L C. Recent temperature and precipitation increases in West Siberia and their association with the Arctic Oscillation[J]. Polar Research, 2003,22(2):287-300. |
[64] | Sugiura K, Takahashi S, Kameda T, et al. Spatial characteristics of rainfall at sparsely distributed station network over the high-latitude mountainous regions in Eastern Siberia[J]. International Journal of Earth & Environmental Sciences, 2016, DOI: 10.15344/2456-351X/2016/104. |
[65] |
Gong T T, Feldstein S, Lee S. The role of downward infrared radiation in the recent arctic winter warming trend[J]. Journal of Climate, 2017,30(13):4937-4949.
doi: 10.1175/JCLI-D-16-0180.1 |
[66] |
Kaufmann R K, Zhou L, Myneni R B, et al. The effect of vegetation on surface temperature: A statistical analysis of NDVI and climate data[J]. Geophysical Research Letters, 2003, DOI: 10.1029/2003GL018251.
doi: 10.1029/2020GL088561 pmid: 32999517 |
[67] | Xu L, Myneni R B, Chapin F S, et al. Temperature and vegetation seasonality diminishment over northern lands[J]. Nature Climate Change, 2013,3(6):581-586. |
[68] |
Screen J A, Simmonds I. Increasing fall-winter energy loss from the Arctic Ocean and its role in Arctic temperature amplification[J]. Geophysical Research Letters, 2010, DOI: 10.1029/2010GL044136.
doi: 10.1029/2020GL088561 pmid: 32999517 |
[69] | Douglas T A, Turetsky M R, Koven C D. Increased rainfall stimulates permafrost thaw across a variety of Interior Alaskan boreal ecosystems[J]. Npj Climate and Atmospheric Science, 2020,3(1):1-7. |
[70] | Kolk H J V D, Heijmans M M P D, Huissteden J V, et al. Potential Arctic tundra vegetation shifts in response to changing temperature, precipitation and permafrost thaw[J]. Biogeosciences, 2016,13(22):6229-6245. |
[71] | Keuper F Parmentier F-J W, Blok D, et al. Tundra in the rain: Differential vegetation responses to three years of experimentally doubled summer precipitation in Siberian shrub and Swedish bog tundra[J]. Ambio, 2012,41(3):269-280. |
[72] | Kopec B G, Feng X H, Michel F A, et al. Influence of sea ice on Arctic precipitation[J]. Proceedings of the National Academy of Sciences, 2016,113(1):46-51. |
[73] | Farquharson L M, Romanovsky V E, Cable W L, et al. Climate change drives widespread and rapid thermokarst development in very cold permafrost in the Canadian high arctic[J]. Geophysical Research Letters, 2019,46(12):6681-6689. |
[74] | Heslop J K, Anthony K M W, Grosse G, et al. Century-scale time since permafrost thaw affects temperature sensitivity of net methane production in thermokarst-lake and talik sediments[J]. Science of The Total Environment, 2019,691(15):124-134. |
[75] |
Walter K M, Zimov S A, Chanton J P, et al. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming[J]. Nature, 2006,443(7107):71-75.
doi: 10.1038/nature05040 pmid: 16957728 |
[76] |
Schuur E A G, Vogel J G, Crummer K G, et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra[J]. Nature, 2009,459(7246):556-559.
doi: 10.1038/nature08031 pmid: 19478781 |
[77] |
Peterson B J, Holmes R M, Mcclelland J W, et al. Increasing river discharge to the Arctic Ocean[J]. Science, 2002,298(5601):2171-2173.
doi: 10.1126/science.1077445 pmid: 12481132 |
[1] | 翟志宏, 江民星, 常春英. 降水对蔬菜价格的冲击效应——以广州为例[J]. 资源科学, 2021, 43(2): 304-315. |
[2] | 方琰, DanielScott, RobertSteiger, 吴必虎, 蒋依依. 气候变化背景下人工造雪技术提升对中国滑雪季节长度的影响[J]. 资源科学, 2020, 42(6): 1210-1222. |
[3] | 郭梦瑶, 佘敦先, 张利平, 汤柔馨, 赵鹏雁. 渭河流域潜在蒸散量变化的气候归因[J]. 资源科学, 2020, 42(5): 907-919. |
[4] | 李慧娟, 师长兴, 马小晴, 刘慰. 黄河中游窟野河流域水沙变化影响因素定量评估[J]. 资源科学, 2020, 42(3): 499-507. |
[5] | 王冠, 陈涵如, 王平, 王田野, 于静洁, 刘昌明, 杨林生. 俄罗斯环北极地区地表径流变化及其原因[J]. 资源科学, 2020, 42(2): 346-357. |
[6] | 韩春坛, 王磊, 陈仁升, 刘章文, 刘俊峰, 阳勇, 吕汉秦. 祁连山高寒山区降水观测网络及其数据应用[J]. 资源科学, 2020, 42(10): 1987-1997. |
[7] | 郑景云, 文彦君, 方修琦. 过去2000年黄河中下游气候与土地覆被变化的若干特征[J]. 资源科学, 2020, 42(1): 3-19. |
[8] | 何志明, 李月臣, 金贤锋, 刘贤, 何小波. 考虑太阳辐射修正的重庆山地气温空间化模拟[J]. 资源科学, 2019, 41(6): 1131-1140. |
[9] | 李晓菲, 徐长春, 李路, 罗映雪, 杨秋萍, 杨媛媛. CMIP5模式对西北干旱区典型流域气温模拟能力评估——以开都-孔雀河为例[J]. 资源科学, 2019, 41(6): 1141-1153. |
[10] | 冯琳, 庞玉亭, 钟琪, 张斌斌, 陈哲祺, 王铜. 1980—2016年气候变化对湖南省农业产量的影响[J]. 资源科学, 2019, 41(3): 582-590. |
[11] | 刘琳, 徐宗学, 杨晓静. 西南地区旱涝演变与ENSO事件的关系[J]. 资源科学, 2019, 41(11): 2144-2153. |
[12] | 王斌, 李鹏, 徐国策, 成玉婷, 赵宾华, 魏芳. 中国一级流域年气温的时空变化特征[J]. 资源科学, 2019, 41(1): 152-163. |
[13] | 常丽博, 骆耀峰, 刘金龙. 哈尼族社会-生态系统对气候变化的脆弱性评估——以云南省红河州哈尼族农村社区为例[J]. 资源科学, 2018, 40(9): 1787-1799. |
[14] | 向燕芸, 陈亚宁, 张齐飞, 卞薇. 天山开都河流域积雪、径流变化及影响因子分析[J]. 资源科学, 2018, 40(9): 1855-1865. |
[15] | 韩项, 尹云鹤, 吴绍洪, 邓浩宇. 汾沁地区蒸散模拟及其时空变化特征[J]. 资源科学, 2018, 40(8): 1658-1671. |
|