资源科学 ›› 2019, Vol. 41 ›› Issue (4): 753-765.doi: 10.18402/resci.2019.04.12
葛畅1, 刘慧琳1, 聂超甲1, 沈强2, 张世文1
收稿日期:
2018-06-27
修回日期:
2018-11-02
发布日期:
2019-04-25
通讯作者:
国家重点研发计划项目(2016YFD0300801); 国家自然科学基金项目(41471186;41571217)
作者简介:
葛畅,男,山东临沂人,硕士生,研究方向为土壤肥沃耕层提升潜力与信息化管理。E-mail:gechang1105@126.com
GE Chang1, LIU Huilin1, NIE ChaoJia1, SHEN Qiang2, ZHANG Shiwen1
Received:
2018-06-27
Revised:
2018-11-02
Published:
2019-04-25
摘要: 为揭示区域土壤肥力空间变异与影响因素及其随尺度变化的特征,本文以北京市平谷区为研究区,选择全区(L)、西部三镇(M)及三镇加密采样(S)三种尺度,以加权和法计算得到的土壤综合肥力指数(IFI)作为土壤肥力的表征,并结合变异函数与地理加权回归(GWR)等方法,分析IFI空间变异特征、各评价指标对土壤肥力贡献程度及其尺度效应,探究不同尺度土壤肥力影响因素作用差异。结果表明:不同尺度下土壤各指标差异明显,而三种尺度下IFI均在0.61左右,不同尺度间IFI变异度变化与其他各指标均不相同;IFI空间变异性具有明显的尺度效应,IFI块基比随着尺度的减小而增加,随机因素引起的变异在总变异中所占比重逐渐增大,L尺度表现为强空间相关性,M尺度表现为中等空间相关性,S尺度表现为弱空间相关性;不同尺度下不同土壤养分含量对IFI的贡献程度不同,L到M尺度各养分系数有所降低,M到S尺度各养分系数变化范围略有增加,单一指标对IFI的作用会受到其他指标的影响。土壤亚类、母质等因素对IFI的影响具有明显的尺度效应,随着尺度的降低各因素对IFI的影响作用总体上呈减弱的趋势。研究结果揭示了平谷区土壤肥力空间变异特征与影响因素及其随尺度的变化特征,为不同尺度下区域土壤肥力评价、空间格局分析等提供了技术支撑。
葛畅, 刘慧琳, 聂超甲, 沈强, 张世文. 土壤肥力及其影响因素的尺度效应——以北京市平谷区为例[J]. 资源科学, 2019, 41(4): 753-765.
GE Chang, LIU Huilin, NIE ChaoJia, SHEN Qiang, ZHANG Shiwen. Scale effect of soil fertility spatial variability and its influencing factors[J]. Resources Science, 2019, 41(4): 753-765.
[1] 王晶, 任丽, 杨联安, 等. 基于云模型的西安市蔬菜区土壤肥力综合评价[J]. 干旱区资源与环境, 2017, 31(10): 183-189. [Wang J, Ren L, Yang L A, et al.Evaluation of soil fertility of vegetable field in Xi’an City based on cloud model[J]. Journal of Arid Land Resources and Environment, 2017, 31(10): 183-189.] [2] 欧阳纯烈, 何云晓. 基于模糊综合评判法的四川绵阳土壤肥力质量评价[J]. 贵州农业科学, 2013, 41(9): 101-103. [Ouyang C L, He Y X.Evaluation of soil fertility by a fuzzy comprehensive method in Mianyang, Sichuan[J]. Guizhou Agricultural Sciences, 2013, 41(9): 101-103.] [3] 王君櫹, 刘斌, 周生路, 等. 基于土壤肥力的江苏省耕作层土壤剥离分区与深度确定[J]. 农业工程学报, 2017, 33(5): 257-263. [Wang J X, Liu B, Zhou S L, et al.Determination of peel depth and partition in cultivated soil of Jiangsu Province[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(5): 257-263.] [4] 叶回春, 张世文, 黄元仿, 等. 北京延庆盆地农田表层土壤肥力评价及其空间变异[J]. 中国农业科学, 2013, 46(15): 3151-3160. [Ye H C, Zhang S W, Huang Y F, et al.Assessment of surface soil fertility and its spatial variability in Yanqing Basin, Beijing, China[J]. Scientia Agricultura Sinica, 2013, 46(15): 3151-3160.] [5] 马小龙, 佘旭, 王朝辉, 等. 旱地小麦产量差异与栽培、施肥及主要土壤肥力因素的关系[J]. 中国农业科学, 2016, 49(24): 4757-4771. [Ma X L, She X, Wang Z H, et al.Yield variation of winter wheat and its relation to cultivation, fertilization, and main soil fertility factors[J]. Scientia Agricultura Sinica, 2016, 49(24): 4757-4771.] [6] Zhang Y, Li C, Wang Y, et al.Maize yield and soil fertility with combined use of compost and inorganic fertilizers on a calcareous soil on the North China Plain[J]. Soil & Tillage Research, 2016, 155: 85-94. [7] 陈小梅, 姚玉才, 章明奎. 浙东海积平原耕地土壤肥力特征及空间变化规律研究[J]. 土壤通报, 2016, 47(3): 618-623. [Chen X M, Yao Y C, Zhang M K.Soil fertility and its spatial variation pattern of cultivated land in Marine Plain of Zhejiang Province[J]. Chinese Journal of Soil Science, 2016, 47(3): 618-623.] [8] Zhang S, Xia C, Li T, et al. Spatial variability of soil nitrogen in a hilly valley: Multiscale patterns and affecting factors[J]. Science of the Total Environment, 2016, 563-564: 10-18. [9] Liu Y, Lv J, Zhang B, et al. Spatial multi-scale variability of soil nutrients in relation to environmental factors in a typical agricultural region, Eastern China[J]. Science of the Total Environment, 2013, 450-451: 108-119. [10] 张世文, 葛畅, 陈晓辉, 等. 区域土壤有机碳空间分布特征与尺度效应[J]. 农业工程学报, 2018, 34(2): 159-168. [Zhang S W, Ge C, Chen X H, et al.Spatial distribution characteristics and scale effects of regional soil organic carbon[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(2): 159-168.] [11] Hu K, Wang S, Li H, et al. Spatial scaling effects on variability of soil organic matter and total nitrogen in suburban Beijing[J]. Geoderma, 2014, 226-227(1): 54-63. [12] 孔达, 王立权, 刘继龙, 等. 黑土区农田土壤含水量空间变异性的尺度效应研究[J]. 水利学报, 2017, 48(5): 608-612. [Kong D, Wang L Q, Liu J L, et al.Scale effect of spatial variability of cropland soil water content in black soil region[J]. Journal of Hydraulic Engineering, 2017, 48(5): 608-612.] [13] 张汪寿, 李晓秀, 黄文江, 等. 不同土地利用条件下土壤质量综合评价方法[J]. 农业工程学报, 2010, 26(12): 311-318. [Zhang W S, Li X X, Huang W J, et al.Comprehensive assessment methodology of soil quality under different land use conditions[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(12): 311-318.] [14] 范海荣, 吴素霞, 常连生. 秦皇岛市草坪土壤肥力数值化综合评价与对策研究[J]. 草业科学, 2013, 30(1): 9-15. [Fan H R, Wu S X, Chang L S.Comprehensive digitization evaluation of turf soil fertility and management countermeasure research on turf soil in Qinhuangdao[J]. Pratacultural Science, 2013, 30(1): 9-15.] [15] 潘瑞, 刘树庆, 颜晓元, 等. 河北省农地土壤肥力特征时空变异分析及其质量评价[J]. 土壤通报, 2011, 42(4): 828-832. [Pan R, Liu S Q, Yan X Y, et al.Analysis of spatial and temporal variation for soil fertility characteristics and quality assessment for Hebei farming land[J]. Chinese Journal of Soil Science, 2011, 42(4): 828-832.] [16] Mokarram M, Hojati M.Using ordered weight averaging (OWA) aggregation for multi-criteria soil fertility evaluation by GIS (case study: Southeast Iran)[J]. Computers and Electronics in Agriculture, 2017, 132: 1-13. [17] 杨宁, 张荣标, 张永春, 等. 基于微生物生态效益的土壤肥力综合评价模型[J]. 农业机械学报, 2013, 44(5): 108-112. [Yang N, Zhang R B, Zhang Y C, et al.Soil fertility synthesis evaluation model based on ecological benefit of microorganism[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(5): 108-112.] [18] 陆扣萍, 谢寅峰, 闵炬, 等. 不同施氮量对太湖地区新增设施菜地土壤硝态氮累积的影响[J]. 土壤, 2011, 43(6): 903-909. [Lu K P, Xie Y F, Min J, et al.Effects of different N rates on soil nitrate nitrogen accumulation in new plastic greenhouse of Taihu Lake Region[J]. Soils, 2011, 43(6): 903-909.] [19] 王美艳, 史学正, 于东升, 等. 黄淮海农业区旱地土壤有机碳变异性的空间尺度效应[J]. 土壤, 2013, 45(4): 648-654. [Wang M Y, Shi X Z, Yu D S, et al.Scale effects of soil organic carbon variability of uplands in Huang-Huai-Hai Agriculture Region of China[J]. Soils, 2013, 45(4): 648-654.] [20] Zhou Y, Biswas A, Ma Z, et al.Revealing the scale-specific controls of soil organic matter at large scale in Northeast and North China Plain[J]. Geoderma, 2016, 271: 71-79. [21] 李龙, 姚云峰, 秦富仓, 等. 小流域土壤有机碳密度空间变异特征的尺度效应研究[J]. 土壤, 2014 , 46(5): 787-792. [Li L, Yao Y F, Qin F C, et al.Scale-dependency of spatial variability of soil organic carbon density in small watershed[J]. Soils, 2014, 46(5): 787-792.] [22] Brunsdon C, Fotheringham S, Charlton M.Geographically weighted regression-modelling spatial non-stationarity[J]. Journal of the Royal Statistical Society, 1998, 47(3): 431-443. [23] 瞿明凯, 李卫东, 张传荣, 等. 地理加权回归及其在土壤和环境科学上的应用前景[J]. 土壤, 2014, 46(1): 15-22. [Qu M K, Li W D, Zhang C R, et al.Geographically weighted regression and its application prospect in soil and environmental sciences[J]. Soils, 2014, 46(1): 15-22.] [24] 陈洋, 齐雁冰, 王茵茵, 等. 多重密度布点对土壤有机质空间特性的解析[J]. 自然资源学报, 2016, 31(12): 2099-2110. [Chen Y, Qi Y B, Wang Y Y, et al.Spatial characters of soil organic matter with multi-sampling density[J]. Journal of Natural Resources, 2016, 31(12): 2099-2110.] [25] 顾成军, 史学正, 于东升, 等. 省域土壤有机碳空间分布的主控因子: 土壤类型与土地利用比较[J]. 土壤学报, 2013, 50(3): 425-432. [Gu C J, Shi X Z, Yu D S, et al.Main factor controlling SOC spatial distribution at the province scale as affected by soil type and land use[J]. Acta Pedologica Sinica, 2013, 50(3): 425-432.] [26] 王淑英, 胡克林, 路苹, 等. 北京平谷区土壤有效磷的空间变异特征及其环境风险评价[J]. 中国农业科学, 2009, 42(4): 1290-1298. [Wang S Y, Hu K L, Lu P, et al.Spatial variability of soil available phosphorus and environmental risk analysis of soil phosphorus in Pinggu County of Beijing[J]. Scientia Agricultura Sinica, 2009, 42(4): 1290-1298.] [27] 李珊, 李启权, 王昌全, 等. 成都平原西部土壤全磷的剖面分布及主控因素[J]. 资源科学, 2018, 40(7): 1397-1406. [Li S, Li Q Q, Wang C Q, et al.Profile distribution of soil total phosphorus and controlling factors on the west Chengdu Plain[J]. Resources Science, 2018, 40(7): 1397-1406.] [28] 徐翠兰, 侯淑楠, 姚紫东, 等. 南方农田土壤容重空间变异性及其尺度效应[J]. 排灌机械工程学报, 2017, 35(5): 424-429. [Xu C L, Hou S N, Yao Z D, et al.Spatial variability and scale effect of soil bulk density of farm land in South China[J]. Journal of Drainage & Irrigation Machinery Engineering, 2017, 35(5): 424-429.] [29] 张世文, 宁汇荣, 高会议, 等. 基于各向异性的区域土壤有机碳三维模拟与空间特征分析[J]. 农业工程学报, 2016, 32(16): 115-124. [Zhang S W, Ning H R, Gao H Y, et al.Three-dimensional simulation and spatial characteristics of soil organic carbon based on anisotropy in region[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(16): 115-124.] |
[1] | 杨定, 杨振山. 高寒地区生态贫困评价及影响因素分析——以色林错地区为例[J]. 资源科学, 2021, 43(2): 293-303. |
[2] | 强文丽, 张翠玲, 刘爱民, 成升魁, 王祥, 李凡. 全球农产品贸易的虚拟耕地资源流动演变及影响因素[J]. 资源科学, 2020, 42(9): 1704-1714. |
[3] | 韩璟, 陈泽秀, 卢新海. 中国海外耕地投资发展的时空格局演变与影响因素[J]. 资源科学, 2020, 42(9): 1715-1727. |
[4] | 张立新, 毕旭, 黄志基. 经济转型背景下城市工业用地利用效率——以长江经济带城市为例[J]. 资源科学, 2020, 42(9): 1728-1738. |
[5] | 王萍萍, 韩一军, 张益. 中国农业化肥施用技术效率演变特征及影响因素[J]. 资源科学, 2020, 42(9): 1764-1776. |
[6] | 黄晶, 薛东前, 代兰海. 农产品主产区村镇建设资源环境承载力空间分异及影响因素——以甘肃省临泽县为例[J]. 资源科学, 2020, 42(7): 1262-1274. |
[7] | 杨凯悦, 宋永永, 薛东前. 黄土高原乡村聚落用地时空演变与影响因素[J]. 资源科学, 2020, 42(7): 1311-1324. |
[8] | 唐健雄, 马梦瑶. 中国工业旅游示范点空间分布特征及影响因素[J]. 资源科学, 2020, 42(6): 1188-1198. |
[9] | 岳立, 薛丹. 黄河流域沿线城市绿色发展效率时空演变及其影响因素[J]. 资源科学, 2020, 42(12): 2274-2284. |
[10] | 刘晨光. 黄河流域专业村空间格局演化及影响因素[J]. 资源科学, 2020, 42(12): 2300-2313. |
[11] | 张新, 刘家明, 朱鹤, 李涛. 北京郊区参与型体育旅游资源时空演化特征及影响因素[J]. 资源科学, 2020, 42(11): 2196-2209. |
[12] | 姜正龙, 王兵, 姜玲秀, 陈映, 刘玖芬, 任永吉, 张贺. 中国海岸带自然资源区划研究[J]. 资源科学, 2020, 42(10): 1900-1910. |
[13] | 乔家君, 朱乾坤, 辛向阳. 黄河流域农区贫困特征及其影响因素[J]. 资源科学, 2020, 42(1): 184-196. |
[14] | 高军波,喻超,戈大专,陈建华. 不同地理环境下农户致贫机理的多尺度比较——以河南省为例[J]. 资源科学, 2019, 41(9): 1690-1702. |
[15] | 王永卿,王来峰,邓洪星,董凯. 湖北省绿色矿山建设影响因素及其效果分析[J]. 资源科学, 2019, 41(8): 1513-1525. |
|