资源科学 ›› 2017, Vol. 39 ›› Issue (8): 1592-1604.doi: 10.18402/resci.2017.08.15
所属专题: 气候变化与地表过程
收稿日期:
2017-01-12
修回日期:
2017-06-15
出版日期:
2017-08-20
发布日期:
2017-08-20
作者简介:
作者简介:董雪,女,山东德州人,硕士生,主要研究方向为定量遥感。E-mail:
基金资助:
Xue DONG1,2(), Jing TIAN1(
), Hua WU3, Suhua LIU1,2
Received:
2017-01-12
Revised:
2017-06-15
Online:
2017-08-20
Published:
2017-08-20
摘要:
地表比辐射率是确定地表长波能量平衡的一个关键参数,也是影响地表温度反演的主要因素,因此比辐射率的精确测定具有重要意义。地表比辐射率除了受地表覆盖类型的影响,与土壤水分含量也密切相关。本文针对MODIS通用分裂窗算法和Landsat TM/ETM+单窗算法,根据 Mira等建立的土壤含水量和土壤比辐射率的经验模型,利用SMEX04试验中Arizona研究区的遥感数据和地面观测数据,探讨考虑土壤水分影响后的比辐射率信息在地表温度反演中是否能够提高其反演精度。研究结果表明:利用考虑土壤水分影响后的比辐射率所反演的地表温度平均误差(ME)和均方根误差(RMSE)均低于比辐射率未考虑土壤水分影响反演的地表温度,其中通用分裂窗算法反演的地表温度ME降低了1.0~1.5K,RMSE降低了0.4~0.8K;单窗算法反演的地表温度ME降低了0.7K,RMSE降低了0.9K。因此,基于土壤比辐射率与土壤水分关系模型的比辐射率修正方法能够提高地表温度的反演精度,并且敏感性分析的结果表明目前土壤水分遥感数据0.04cm3/cm3的误差对本文使用的考虑土壤水分获取地表比辐射率进而反演地表温度的方法影响不明显。
董雪, 田静, 吴骅, 刘素华. 考虑土壤水分影响的比辐射率方法在地表温度反演中的应用[J]. 资源科学, 2017, 39(8): 1592-1604.
Xue DONG, Jing TIAN, Hua WU, Suhua LIU. Application of the emissivity method considering the effects of soil moisture for retrieving land surface temperature[J]. Resources Science, 2017, 39(8): 1592-1604.
表1
CE-312不同通道、不同质地的土壤比辐射率与土壤含水量关系模型各系数值"
CE-312通道 | Channel 1(8~13.3μm) | Channel 2(11.5~12.4μm) | Channel 3(10.2~11.3μm) | ||||||
对应传感器波段 | TM/ETM+ 6 | MODIS 32 | MODIS 31 | ||||||
a | b | c | a | b | c | a | b | c | |
壤土 | 0.963 | - | 0.009 | 0.965 | 0.040 | 0.004 | 0.958 | 0.052 | 0.004 |
砂壤 | 0.987 | - | 0.016 | 0.980 | 0.020 | 0.010 | 0.970 | 0.030 | 0.009 |
粉壤 | 0.968 | - | 0.012 | 1.010 | -0.050 | 0.019 | 1.004 | -0.04 | 0.018 |
粘壤 | 0.970 | - | 0.012 | 1.023 | -0.068 | 0.025 | 0.996 | -0.034 | 0.016 |
表2
三种方法获取的MODIS地表温度反演值误差统计"
时间 | ME | RMSE | ||||
---|---|---|---|---|---|---|
LST_GSW | LST_Weighed | LST_addSM_M | LST_GSW | LST_Weighed | LST_addSM_M | |
第221天 | -1.81 | -1.27 | -0.42 | 2.25 | 1.77 | 1.52 |
第222天 | -5.01 | -4.50 | -3.73 | 5.31 | 4.82 | 4.15 |
第223天 | -0.70 | -0.18 | 0.73 | 1.96 | 1.74 | 1.78 |
第226天 | -0.71 | -0.29 | 0.72 | 2.34 | 2.24 | 2.38 |
第238天 | -4.33 | -3.78 | -2.62 | 5.24 | 4.77 | 3.91 |
第239天 | -1.40 | -0.84 | 0.35 | 2.56 | 2.28 | 2.12 |
Mean | -2.33 | -1.81 | -0.83 | 3.57 | 3.22 | 2.83 |
表3
三种方法获取的研究区不同地表类型比辐射率值和地表温度值对比结果"
地表类型 | 裸土 | 灌木地 | 草地 | 稀疏林地 | 常绿林地 | |
---|---|---|---|---|---|---|
地表比辐射率 | Emi_GSW | 0.971 | 0.974 | 0.975 | 0.977 | 0.979 |
Emi_Weighed | 0.966 | 0.971 | 0.982 | 0.982 | 0.982 | |
Emi_addSM_M | 0.950 | 0.969 | 0.980 | 0.979 | 0.978 | |
地表温度/K | LST_GSW | 319.56 | 314.48 | 314.39 | 314.00 | 311.90 |
LST_Weighed | 319.88 | 314.68 | 314.08 | 313.70 | 311.76 | |
LST_addSM_M | 320.67 | 314.73 | 314.16 | 313.82 | 311.80 |
表6
土壤含水量的变化引起的MODIS比辐射率和地表温度平均误差,以研究区2004年第221天数据为例"
输入参数 | 变化幅度 | 引起的MOIDS第31波段比辐射率平均误差 | 引起的MOIDS第32波段比辐射率平均误差 | 引起的地表温度 平均误差 /K |
---|---|---|---|---|
θv(cm3/cm3) | +0.20 | 0.016 | 0.015 | -0.94 |
+0.16 | 0.014 | 0.013 | -0.80 | |
+0.12 | 0.011 | 0.011 | -0.64 | |
+0.08 | 0.008 | 0.008 | -0.48 | |
+0.04 | 0.005 | 0.005 | -0.28 | |
-0.04 | -0.005 | -0.005 | 0.27 | |
-0.08 | -0.010 | -0.010 | 0.52 | |
-0.12 | -0.013 | -0.013 | 0.58 | |
-0.16 | -0.016 | -0.017 | 0.75 |
[1] | 江东,王乃斌,杨小唤,等. 地面温度的遥感反演:理论、推导及应用[J]. 甘肃科学学报,2001,13(4):36-40. |
[ Jiang D,Wang N B,Yang X H,et al. Retrieval of land surface temperature:Theory,deduction and application[J]. Journal of Gansu Sciences,2001,13(4):36-40.] | |
[2] | 甘甫平,陈伟涛,张绪教,等. 热红外遥感反演陆地表面温度研究进展[J]. 国土资源遥感,2006,(1):6-11. |
[Gan F P,Chen W T,Zhang X J,et al. The progress in the study of thermal infrared remote sensing for retrieving land surface temperature[J]. Remote Sensing for Land & Resources,2006,(1):6-11.] | |
[3] | 李琴,陈曦,包安明,等.干旱/半干旱区MODIS地表温度反演与验证研究[J]. 遥感技术与应用,2008,23(6):643-647. |
[Li Q,Chen X,Bao A M,et al. Validation of land surface temperatures retrieving in arid/semi-arid regions[J]. Remote Sensing Tech-nology and Application,2008,23(6):643-647.] | |
[4] | Snyder W C,Wan Z M,Zhang Y,et al. Classification-based emissivity for land surface temperature measurement from space[J]. International Journal of Remote Sensing,1998,19(14):2753-2774. |
[5] | Li Z L,Petitcolin F,Zhang R H.A physically based algorithm for land surface emissivity retrieval from combined mid-infrared and thermal infrared data[J]. Science in China Series E:Technological Sciences,2000,43(1):23-33. |
[6] | Peres L F,Dacamara C C.Land surface temperature and emis-sivity estimation based on the two-temperature method:Sen-sitivity analysis using simulated MSG/SEVIRI data[J]. Remote Sensing of Environment,2004,91(3-4):377-389. |
[7] | Jiang G M,Li Z L,Nerry F.Land surface emissivity retrieval from combined mid-infrared and thermal infrared data of MSG-SEVIRI[J]. Remote Sensing of Environment,2006,105(4):326-340. |
[8] | Peres L F,Dacamara C C,Trigo I F,et al. Synergistic use of the two-temperature and split-window methods for land-surface temperature retrieval[J]. International Journal of Remote Sensing,2010,31(16):4387-4409. |
[9] | Wang N,Wu H,Nerry F,et al. Temperature and emissivity retrievals from hyperspectral thermal infrared data using linear spectral emissivity constraint[J]. IEEE Transactions on Geo-science and Remote Sensing,2011,49(4):1291-1303. |
[10] | Van De Griend A A,Owe M. On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces[J]. International Journal of Remote Sensing,1993,14(6):1119-1131. |
[11] | Sobrino J A,Raissouni N,Li Z L.A comparative study of land surface emissivity retrieval from NOAA data[J]. Remote Sensing of Environment,2001,75(2):256-266. |
[12] | 田静,米素娟,何洪林,等. 土壤水分及粗糙度对比辐射率的影响[J]. 遥感学报,2016,20(4):561-569. |
[Tian J,Mi S J,He H L,et al. Effect of soil water content and soil roughness on the thermal infrared emissivity of bare soil[J]. Journal of Remote Sensing,2016,20(4):561-569. ] | |
[13] | 肖青,柳钦火,李小文,等.热红外发射率光谱的野外测量方法与土壤热红外发射率特性研究[J]. 红外与毫米波学报,2003,22(5):373-378. |
[Xiao Q,Liu Q H,Li X W,et al. A field measurement method of spectral emissivity and research on the feature of soil thermal infrared emissivity[J]. Journal of Infrared and Millimeter Waves,2003,22(5):373-378.] | |
[14] | Xu L,Wang Q.Retrieval of soil water content in saline soils from emitted thermal infrared spectra using partial linear squares regression[J]. Remote Sensing,2015,7(11):14646-14662. |
[15] | Mira M,Valor E,Caselles V,et al. Soil moisture effect on thermal infrared (8-13-μm)emissivity[J]. IEEE Transactions on Geoscience & Remote Sensing,2010,48(5):2251-2260. |
[16] | Sanchez J M,French A N,Mira M,et al. Thermal infrared emissivity dependence on soil moisture in field conditions[J]. IEEE Transactions on Geoscience & Remote Sensing,2011,49(11):4652-4659. |
[17] | Wang H S,Xiao Q,Li H,et al. Investigating the impact of soil moisture on thermal infrared emissivity using ASTER data[J]. Geoscience & Remote Sensing Letters IEEE,2015,12(2):294-298. |
[18] | Qin Z H,Karnieli A,Berliner P.A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region[J]. International Journal of Remote Sensing,2001,22(18):3719-3746. |
[19] | Wan Z M,Dozier J.A generalized split-window algorithm for retrieving land-surface temperature from space[J]. IEEE Trans-actions on Geoscience & Remote Sensing,1996,34(4):892-905. |
[20] | 覃志豪,李文娟,徐斌,等. 陆地卫星TM6波段范围内地表比辐射率的估计[J]. 国土资源遥感,2004,16(3):28-32. |
[Qin Z H,Li W J,Xu B,et al. The estimation of land surface emissivity for Landsat TM6[J]. Remote Sensing for Land Resources,2004,16(3):28-32.] | |
[21] | Sobrino J A,Jiménez-Muñoz J C,Paolini L. Land surface temperature retrieval from LANDSAT TM 5[J]. Remote Sensing of Environment,2004,90(4):434-440. |
[22] | Mira M,Valor E,Boluda R,et al. Influence of soil water content on the thermal infrared emissivity of bare soils. Implication for land surface temperature determination[J]. Journal of Geo-physical Research Atmospheres,2007,112(F4):117-131. |
[23] | Keefer T,Goodrich D,Moran S.SMEX04 Surface Temperature Data:Arizona[DB/OL]. Boulder,Colorado USA:NASA DAAC at the National Snow and Ice Data Center,2009. |
[24] | Cosh M H,White W A.SMEX04 Soil Characteristics Data:Arizona[DB/OL]. Boulder,Colorado USA:NASA DAAC at the National Snow and Ice Data Center,2009. |
[25] | Jackson T J,Bindlish R,Gasiewski A J,et al. SMEX04 Aircraft Polarimetric Scanning Radiometer(PSR)Data[DB/OL]. Boulder,Colorado USA:NASA DAAC at the National Snow and Ice Data Center,2009. |
[26] | Hunt E R,Jackson T J,Yilmaz M T.SMEX04 Land Use Classi-fication Data[DB/OL]. Boulder,Colorado USA:NASA DAAC at the National Snow and Ice Data Center,2009. |
[27] | Cosh M,Hunt E R,Jackson T J,et al. SMEX04 Landsat TM/ETM+ NDVI and NDWI[DB/OL]. Boulder,Colorado USA:NASA DAAC at the National Snow and Ice Data Center,2009. |
[28] | Keefer T,Goodrich D,Moran S.SMEX04 Meteorological Network Data:Arizona[DB/OL]. Boulder,Colorado USA:NASA DAAC at the National Snow and Ice Data Center,2009. |
[29] | Zeng J,Chen K S,Bi H,et al. A preliminary evaluation of the SMAP radiometer soil moisture product over United States and Europe using ground-based measurements[J]. IEEE Trans-actions on Geoscience & Remote Sensing,2016,54(8):4929-4940. |
[30] | Sanchez N,Martinez-Fernandez J,Scaini A,et al. Validation of the SMOS L2 soil moisture data in the REMEDHUS network (Spain)[J]. IEEE Transactions on Geoscience & Remote Sensing,2012,50(5):1602-1611. |
[31] | Jackson T J,Bindlish R,Cosh M H,et al. Validation of soil moisture and ocean salinity (SMOS)soil moisture over watershed networks in the U.S.[J]. IEEE Transactions on Geo-science & Remote Sensing,2012,50(5):1530-1543. |
[1] | 刘磊, 李小雁, 蒋志云, 魏俊奇, 南木甲. 青海湖流域不同海拔高度土壤水分时空变化特征[J]. 资源科学, 2017, 39(2): 263-275. |
[2] | 李俐, 王荻, 王鹏新, 黄健熙, 朱德海. 合成孔径雷达土壤水分反演研究进展[J]. 资源科学, 2015, 37(10): 1929-1940. |
[3] | 阿布都外力·吉力力, 甘容, 罗毅, 孙林, 吴娜, 杨传杰, 张艳. 灌溉水矿化度对玛纳斯流域棉花生长影响的试验研究[J]. , 2012, 34(4): 660-667. |
[4] | 罗红霞, 邵景安, 张雪清. 基于辐射传导方程的三峡库区腹地地表温度的遥感反演[J]. , 2012, 34(2): 256-264. |
[5] | 韩春峰, 伍雄昌, 余珊, 张友水. 多时相遥感影像福州市热场与土地覆盖分析[J]. , 2011, 33(5): 950-957. |
[6] | 方江平, 郭其强, 罗大庆, 权 红, 赵垦田. 西藏半干旱区三种柏树抗旱性研究[J]. , 2010, 32(8): 1601-1607. |
[7] | 蔡典雄, 胡育骄, 华珞, 王小彬, 吴会军, 武雪萍, 赵全胜, 郑妍, 左余宝. 海冰水灌溉配合农艺措施对棉田土壤水盐动态的影响[J]. , 2010, 32(3): 457-465. |
[8] | 刘玉洁, 罗毅. FAO-56土壤水分胁迫指数计算方法试验研究[J]. , 2010, 32(10): 1902-1909. |
[9] | 陈松林, 马娅, 王天星. 基于ASTER数据源的地表参数关系分析[J]. , 2008, 30(8): 1275-1281. |
[10] | 潘兴瑶, 夏军, 张橹. 土壤水分随机模型支持下的土壤水平衡研究进展[J]. , 2008, 30(3): 460-467. |
[11] | 匡文慧, 李颖, 谢云峰, 张树文, 张新乐. 城市热环境与土地利用类型格局的相关性分析——以长春市为例[J]. , 2008, 30(10): 1564-1570. |
[12] | 黄妙芬, 刘绍民, 刘素红, 邢旭峰. 红外辐射计遥测地表温度空间变异特征[J]. , 2007, 29(2): 97-103. |
[13] | 吕厚荃, 于贵瑞. 几种实际蒸散计算方法在土壤水分模拟中的应用[J]. , 2001, 23(6): 85-90. |
[14] | 董庆超. 旱地土壤水分盈亏特征研究[J]. , 2000, 22(6): 51-53. |
[15] | 高贵清, 李孝彬, 吕惠明, 隋唯强, 汪洪清, 王恒俊, 谢永生. 滦平试区薄土坡耕地土壤水分特征及其评价[J]. , 1996, 18(6): 56-60. |
|