资源科学 ›› 2022, Vol. 44 ›› Issue (9): 1772-1784.doi: 10.18402/resci.2022.09.03
收稿日期:
2022-03-07
修回日期:
2022-07-19
出版日期:
2022-09-25
发布日期:
2022-11-25
作者简介:
郑玉华,女,河北承德人,教授,主要研究方向为资源与环境管理,能源经济与政策。E-mail: cupbazyh@163.com
基金资助:
Received:
2022-03-07
Revised:
2022-07-19
Online:
2022-09-25
Published:
2022-11-25
摘要:
客运交通在京津冀地区城市交通总量中占比高,其减排潜力是影响交通碳达峰的关键因素。本文建立了基于Agent建模与仿真方法的京津冀地区城市客运交通系统的模型,模拟了京津冀地区不同城市客运交通碳减排政策情景下消费者的交通出行行为,评估了各类碳减排政策的环境效益、经济成本及其对碳达峰的影响。结果显示:①乘用车燃料效能提升政策是唯一可以在2030年京津冀三地同时实现城市客运交通碳排放达峰的政策情景,且其碳减排的经济成本较低,其中天津市预计最先实现碳排放达峰,北京市次之,河北省最后;②公共交通推广政策的碳减排经济成本相对较高,尤其以河北省最为突出,虽然该政策可以在北京市和河北省实现城市客运交通碳排放达峰,但无法实现天津市碳排放达峰目标;③交通拥堵收费政策在京津冀三地单独实施无法实现碳排放达峰目标,需要与其他政策组合实施。基于此,京津冀三地实现客运交通碳排放达峰目标需要持续推进乘用车燃料效能的提升,此外还可以采取新能源汽车补贴、公共交通推广和交通拥堵收费等组合政策,以降低减排的经济成本。
郑玉华, 贾艺伟. 京津冀地区城市客运交通碳减排政策的成本效益分析[J]. 资源科学, 2022, 44(9): 1772-1784.
ZHENG Yuhua, JIA Yiwei. Cost-benefit analysis of carbon emission mitigation policies for urban passenger transport in the Beijing-Tianjin-Hebei region[J]. Resources Science, 2022, 44(9): 1772-1784.
[1] |
Du H B, Liu D Y, Southworth F, et al. Pathways for energy conservation and emissions mitigation in road transport up to 2030: A case study of the Jing-Jin-Ji area, China[J]. Journal of Cleaner Production, 2017, 162: 882-893.
doi: 10.1016/j.jclepro.2017.06.054 |
[2] |
马海涛, 康雷. 京津冀区域公路客运交通碳排放时空特征与调控预测[J]. 资源科学, 2017, 39(7): 1361-1370.
doi: 10.18402/resci.2017.07.13 |
[ Ma H T, Kang L. Spatial and temporal characteristics and prediction of carbon emissions from road traffic in the Beijing-Tianjin-Hebei Region[J]. Resources Science, 2017, 39(7): 1361-1370.]
doi: 10.18402/resci.2017.07.13 |
|
[3] |
洪竞科, 李沅潮, 蔡伟光, 等. 多情景视角下的中国碳达峰模拟: 基于RICE-LEAP模型[J]. 资源科学, 2021, 43(4): 639-651.
doi: 10.18402/resci.2021.04.01 |
[ Hong J K, Li Y C, Cai W G, et al. Simulating China’s carbon emission peak path under different scenarios based on RICE-LEAP model[J]. Resources Science, 2021, 43(4): 639-651.] | |
[4] |
王勇, 韩舒婉, 李嘉源, 等. 五大交通运输方式碳达峰的经验分解与情景预测: 以东北三省为例[J]. 资源科学, 2019, 41(10): 1824-1836.
doi: 10.18402/resci.2019.10.06 |
[ Wang Y, Han S W, Li J Y, et al. Empirical decomposition and forecast of peak carbon emissions in five major transportation modes: Taking the three provinces in Northeast China as examples[J]. Resources Science, 2019, 41(10): 1824-1836.] | |
[5] |
Ren L, Zhou S, Ou X M. Life-cycle energy consumption and greenhouse-gas emissions of hydrogen supply chains for fuel-cell vehicles in China[J]. Energy, 2020,DOI: 10.1016/j.energy.2020.118482.
doi: 10.1016/j.energy.2020.118482 |
[6] |
Ahmadi P. Environmental impacts and behavioral drivers of deep decarbonization for transportation through electric vehicles[J]. Journal of Cleaner Production, 2019, 225: 1209-1219.
doi: 10.1016/j.jclepro.2019.03.334 |
[7] |
刘固望, 闫强, 羊建波. 基于交通部门“S”形模型的全球石油需求展望[J]. 资源科学, 2018, 40(3): 547-557.
doi: 10.18402/resci.2018.03.09 |
[ Liu G W, Yan Q, Yang J B. World oil demand based on S-Curve model of the transport sector[J]. Resources Science, 2018, 40(3): 547-557.]
doi: 10.18402/resci.2018.03.09 |
|
[8] | 任梦磊, 杨斌, 李珺. 考虑能源结构和气候因素的电动汽车温室气体影响[J]. 环境科学学报, 2019, 39(7): 2434-2441. |
[ Ren M L, Yang B, Li J. Greenhouse gases impact of electric vehicles considering the influence of energy structure and climate[J]. Acta Scientiae Circumstantiae, 2019, 39(7): 2434-2441.] | |
[9] |
Nugmanova A, Arndt W H, Hossain M A, et al. Effectiveness of ring roads in reducing traffic congestion in cities for long run: Big Almaty Ring Road case study[J]. Sustainability, 2019, DOI:10.3390/su11184973.
doi: 10.3390/su11184973 |
[10] |
Lee S. Transport policies, induced traffic and their influence on vehicle emissions in developed and developing countries[J]. Energy Policy, 2018, 121: 264-274.
doi: 10.1016/j.enpol.2018.06.035 |
[11] |
Zhang S J, Niu T L, Wu Y, et al. Fine-grained vehicle emission management using intelligent transportation system data[J]. Environmental Pollution, 2018, 241: 1027-1037.
doi: S0269-7491(18)32358-3 pmid: 30029310 |
[12] |
Yang Z W, Peng J F, Wu L, et al. Speed-guided intelligent transportation system helps achieve low-carbon and green traffic: Evidence from real-world measurements[J]. Journal of Cleaner Production, 2020, DOI: 10.1016/j.jclepro.2020.122230.
doi: 10.1016/j.jclepro.2020.122230 |
[13] | 李家印, 郭文忠, 李小燕, 等. 基于智能交通的隐私保护道路状态实时监测方案[J]. 通信学报, 2020, 41(7): 74-83. |
[ Li J Y, Guo W Z, Li X Y, et al. Privacy-preserving real-time road conditions monitoring scheme based on intelligent traffic[J]. 2020, 41(7): 74-83.] | |
[14] |
刘清春, 张莹莹, 肖燕, 等. 济南市主城区私家车日常出行碳排放特征及影响因素[J]. 资源科学, 2018, 40(2): 262- 272.
doi: 10.18402/resci.2018.02.04 |
[ Liu Q C, Zhang Y Y, Xiao Y, et al. Characteristics and determinants of carbon emissions from daily private cars travel in central area of Jinan[J]. Resources Science, 2018, 40(2): 262-272.]
doi: 10.18402/resci.2018.02.04 |
|
[15] | Hu Y J, Li X P. Modeling and analysis of excess commuting with trip chains[J]. Annals of the American Association of Geographers, 2021, 111(6): 1851-1867. |
[16] |
荣培君, 张丽君, 刘荣增, 等. 开封城市家庭日常出行碳排放空间分异研究[J]. 资源科学, 2018, 40(6): 1307-1318.
doi: 10.18402/resci.2018.06.20 |
[ Rong P J, Zhang L J, Liu R Z, et al. The spatial diversity of household daily travel carbon emissions in Kaifeng[J]. Resources Science, 2018, 40(6): 1307-1318.]
doi: 10.18402/resci.2018.06.20 |
|
[17] |
Xu W T, Yang L C, Zhang W. Evaluation of transport policy packages in the excess commuting framework: The case of Xiamen, China[J]. Cities, 2019, 87: 39-47.
doi: 10.1016/j.cities.2018.12.009 |
[18] | 张清, 陶小马, 杨鹏. 特大型城市客运交通碳排放与减排对策研究[J]. 中国人口·资源与环境, 2012, 22(1): 35-42. |
[ Zhang Q, Tao X M, Yang P. Research on carbon emissions from metropolis urban passenger transport and countermeasures[J]. China Population, Resources and Environment, 2012, 22(1): 35-42.] | |
[19] |
王白雪, 郭琨. 北京市公共交通碳排放效率研究: 基于超效率SBM模型和ML指数[J]. 系统科学与数学, 2018, 38(4): 456-467.
doi: 10.12341/jssms13393 |
[ Wang B X, Guo K. The efficient of carbon emissions efficiency of Beijing public transportation system: Based on super-efficiency SBM model using Malmquist-Luenberger Index[J]. Journal of Systems Science and Mathematical Sciences, 2018, 38(4): 456-467.]
doi: 10.12341/jssms13393 |
|
[20] |
Zhang L L, Long R Y, Chen H, et al. Analysis of an optimal public transport structure under a carbon emission constraint: A case study in Shanghai, China[J]. Environmental Science and Pollution Research, 2018, 25(4): 3348-3359.
doi: 10.1007/s11356-017-0660-4 |
[21] |
Zhang L L, Long R Y, Li W B, et al. Potential for reducing carbon emissions from urban traffic based on the carbon emission satisfaction: Case study in Shanghai[J]. Journal of Transport Geography, 2020, DOI: 10.1016/j.jtrangeo.2020.102733.
doi: 10.1016/j.jtrangeo.2020.102733 |
[22] |
Hysing E, Isaksson K. Building acceptance for congestion charges:The Swedish experiences compared[J]. Journal of Transport Geography, 2015, 49: 52-60.
doi: 10.1016/j.jtrangeo.2015.10.008 |
[23] | 徐曌, 欧国立. 交通拥堵收费的理论依据和政策分析[J]. 中国工业经济, 2012, (12): 18-30. |
[ Xu Z, Ou G L. Theoretical basis and policy analysis on congestion charge[J]. China Industrial Economics, 2012, (12): 18-30.] | |
[24] | 邵丹娜, 刘学敏. 意愿价值评估法在城市管理决策中的应用: 以杭州市拟征收交通拥堵费的意愿调查为例[J]. 城市发展研究, 2015, 22(2): 118-124. |
[ Shao D N, Liu X M. Application of contingent valuation method on evaluating urban management policy: A contingent valuation on potential congestion charge during the peak hour in Hangzhou city[J]. Urban Development Studies, 2015, 22(2): 118-124.] | |
[25] | 杨浩雄, 孔丹. 城市交通拥堵收费政策效用研究[J]. 价格理论与实践, 2017, (6): 66-70. |
[ Yang H X, Kong D. The effectiveness of urban traffic congestion charge policy[J]. Price: Theory & Practice, 2017, (6): 66-70.] | |
[26] | 曹静, 王鑫, 钟笑寒. 限行政策是否改善了北京市的空气质量?[J]. 经济学(季刊), 2014, 13(3): 1091-1126. |
[ Cao J, Wang X, Zhong X H. Did driving restrictions improve air quality in Beijing?[J]. China Economic Quarterly, 2014, 13(3): 1091-1126.] | |
[27] |
Chen S, Zheng X, Yin H T, et al. Did Chinese cities that implemented driving restrictions see reductions in PM10?[J]. Transportation Research Part D: Transport and Environment, 2020, DOI: 10.1016/j.trd.2019.102208.
doi: 10.1016/j.trd.2019.102208 |
[28] | 孙传旺, 徐淑华. 城市机动车限行对PM2.5的影响与效果检验[J]. 中国管理科学, 2021, 29(1): 196-206. |
[ Sun C W, Xu S H. Analysis of the impact and effect test of urban vehicles restriction on PM2.5 emission[J]. China Journal of Management Science, 2021, 29(1): 196-206.] | |
[29] |
Ou S, He X, Ji W, et al. Machine learning model to project the impact of COVID-19 on US motor gasoline demand[J]. Nature Energy, 2020, 5: 666-673.
doi: 10.1038/s41560-020-0662-1 |
[30] |
Hu S H, Chen P. Who left riding transit? Examining socioeconomic disparities in the impact of COVID-19 on ridership[J]. Transport Research Part D: Transport and Environment. 2021, DOI: 10.1016/j.trd.2020.102654.
doi: 10.1016/j.trd.2020.102654 |
[31] |
Patel H, Talbot N, Salmond J, et al. Implications for air quality management of changes in air quality during lockdown in Auckland (New Zealand) in response to the 2020 SARS-CoV-2 epidemic[J]. The Science of the Total Environment, 2020, DOI:10.1016/j.scitotenv.2015.07.104.
doi: 10.1016/j.scitotenv.2015.07.104 |
[32] |
Maria C C, Alessandro A, Giorgio B, et al. Lockdown for CoViD-2019 in Milan: What are the effects on air quality?[J]. The Science of the Total Environment, 2020, DOI: 10.1016/j.scitotenv.2020.139280.
doi: 10.1016/j.scitotenv.2020.139280 |
[33] |
Xin Y L, Shao S Q, Wang Z C, et al. COVID-2019 lockdown in Beijing: A rare opportunity to analyze the contribution rate of road traffic to air pollutants[J]. Sustainable Cities and Society, 2021, DOI: 10.1016/j.scs.2021.102989.
doi: 10.1016/j.scs.2021.102989 |
[34] |
Diao M. Towards sustainable urban transport in Singapore: Policy instruments and mobility trends[J]. Transport Policy, 2019, 81: 320-330.
doi: 10.1016/j.tranpol.2018.05.005 |
[35] |
Green C P, Heywood J S, Paniagua M N. Did the London congestion charge reduce pollution?[J]. Regional Science and Urban Economics, 2020, DOI: 10.1016/j.regsciurbeco.2020.103573.
doi: 10.1016/j.regsciurbeco.2020.103573 |
[36] |
Ding H L, Sze N N, Li H J, et al. Affected area and residual period of London Congestion Charging scheme on road safety[J]. Transport Policy, 2021, 100: 120-128.
doi: 10.1016/j.tranpol.2020.10.012 |
[37] |
Li X, Yu B Y. Peaking CO2 emissions for China’s urban passenger transport sector[J]. Energy Policy, 2019, DOI: 10.1016/j.enpol.2019.110913.
doi: 10.1016/j.enpol.2019.110913 |
[38] |
Zhao F Q, Liu F Q, Liu Z W, et al. The correlated impacts of fuel consumption improvements and vehicle electrification on vehicle greenhouse gas emissions in China[J]. Journal of Cleaner Production, 2019, 207: 702-716.
doi: 10.1016/j.jclepro.2018.10.046 |
[39] |
Lopez N S, Soliman J, Biona J B M, et al. Cost-benefit analysis of alternative vehicles in the Philippines using immediate and distant future scenarios[J]. Transportation Research Part D: Transport and Environment, 2020, DOI: 10.1016/j.enpol.2019.110913.
doi: 10.1016/j.enpol.2019.110913 |
[40] |
Bilgili L, Kuzu S L, Cetinkaya A Y, et al. Evaluation of railway versus highway emissions using LCA approach between the two cities of Middle Anatolia[J]. Sustainable Cities and Society, 2019, DOI: 10.1016/j.scs.2019.101635.
doi: 10.1016/j.scs.2019.101635 |
[41] |
Chen S, Wu J, Zong Y. The impact of the freight transport modal shift policy on China’s carbon emissions reduction[J]. Sustainability, 2020, DOI:10.3390/su12020583.
doi: 10.3390/su12020583 |
[42] | 刘永. 基于出行选择行为的城市公共交通票价研究[D]. 南昌: 华东交通大学, 2016. |
[ Liu Y. Public Transportation Fares Research Based on Travel Choice Behavior[D]. Nanchang: East China Jiaotong University, 2016.] | |
[43] | 张卫华, 刘冉冉, 颜鹏, 等. 考虑舒适度因素的出行价值模型[J]. 公路交通科技, 2020, 37(5): 116-122. |
[ Zhang W H, Liu R R, Yan P, et al. A travel value model considering comfort factors[J]. Journal of Highway and Transportation Research and Development, 2020, 37(5): 116-122.] | |
[44] | 房德威, 何东坡, 王立峰, 等. 城市轨道交通车厢内拥挤成本的估计方法[J]. 交通运输工程学报, 2018, 18(6): 121-130. |
[ Fang D W, He D P, Wang L F, et al. Estimation method of crowing cost in urban rail transit carriages[J]. Journal of Traffic and Transportation Engineering, 2018, 18(6): 121-130.] | |
[45] | 申晓鹏. 城市轨道交通碳减排测算理论与应用研究[D]. 北京: 北京交通大学, 2018. |
[ Shen X P. Study on Calculation Theory and Application of Carbon Emission Reduction of Urban Rail Transit: Taking Beijing As an Example[D]. Beijing: Beijing JiaoTong University, 2018.] | |
[46] |
Pagani M, Korosec W, Chokani N, et al. User behavior and electric vehicle charging infrastructure: An agent-based model assessment[J]. Applied Energy, 2019, DOI:10.1016/j.apenergy.2019.113680.
doi: 10.1016/j.apenergy.2019.113680 |
[47] | 张秀媛, 杨新苗, 闫琰. 城市交通能耗和碳排放统计测算方法研究[J]. 中国软科学, 2014, (6): 142-150. |
[ Zhang X Y, Yang X M, Yan Y. Statistical estimation method for energy consumption and carbon emissions by urban transport[J]. China Soft Science, 2014, (6): 142-150.] | |
[48] | 交通运输部. 2019年交通运输行业发展统计公报[EB/OL]. (2020-05-12)[2022-03-07]. http://www.gov.cn/xinwen/2020-05/12/content_5510817.htm. |
[Ministry of Transport of the People’s Republic of China. Statistical Bulletin on the Development of Transportation in 2019[EB/OL]. (2020-05-12)[2022-03-07]. http://www.gov.cn/xinwen/2020-05/12/content_5510817.htm.] | |
[49] | 李培林. 怎样界定中等收入群体更准确[N/OL]. (2017-07-17)[2021-09-05]. http://news.cssn.cn/zx/yw/201707/t20170717_358 1342.shtml. |
[ Li P L. How to Define the Middle-Income Group More Accurately[N/OL]. (2017-07-17)[2021-09-05]. http://news.cssn.cn/zx/yw/201707/t20170717_3581342.shtml.] | |
[50] | 中国社会科学调查中心. 2018年中国家庭追踪调查(CFPS)[EB/OL]. (2020-12-31)[2021-10-18]. http://www.isss.pku.edu.cn/cfps/sjzx/gksj/index.htm. |
[Institute of Social Science Survey. China Family Panel Studies (CFPS)[EB/OL]. (2020-12-31)[2021-10-18]. http://www.isss.pku.edu.cn/cfps/sjzx/gksj/index.htm.] | |
[51] | 北京交通发展研究院. 2020北京交通发展年报[EB/OL]. (2021-09-25)[2021-12-30]. https://www.bjtrc.org.cn/List/index/cid/7.html. |
[Beijing Transport Institute. 2020 Beijing Transportation Development Annual Report[EB/OL]. (2021-09-25)[2021-12-30]. https://www.bjtrc.org.cn/List/index/cid/7.html.] | |
[52] | 中华人民共和国统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2021. |
[National Bureau of Statistics. China Statistical Yearbook[M]. Beijing: China Statistical Press, 2021.] | |
[53] | Huang J Z, Wang H F, Fan M, et al. Understanding the Impact of the COVID-19 Pandemic on Transportation-Related Behaviors withHuman Mobility Data[C]. San Diego:The 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020. |
[54] | 卢真, 崔宇宁. 发达地区交通拥堵费制度比较及北京市方案探讨[J]. 经济研究参考, 2016, (34): 25-31. |
[ Lu Z, Cui Y N. Comparison of traffic congestion fee system in developed areas and discussion on Beijing scheme[J]. Review of Economic Research, 2016, (34): 25-31.] | |
[55] | 中国汽车工程学会. 节能与新能源汽车技术路线图2.0[M]. 北京: 机械工业出版社, 2020. |
[China Society of Automotive Engineers. Energy Saving and New Energy Vehicle Technology Roadmap 2.0[M]. Beijing: China Machine Press, 2020.] |
[1] | 郑林昌, 张亚楠, 李泽阳, 赵颖. 不同消费情景下中国新能源汽车锂回收潜力[J]. 资源科学, 2022, 44(1): 97-113. |
[2] | 姜鲁光, 杨成, 封志明, 刘晔. 面向多目标情景的大清河流域水资源利用权衡[J]. 资源科学, 2021, 43(8): 1649-1661. |
[3] | 洪竞科, 李沅潮, 蔡伟光. 多情景视角下的中国碳达峰路径模拟——基于RICE-LEAP模型[J]. 资源科学, 2021, 43(4): 639-651. |
[4] | 冯斐, 冯学钢, 侯经川, 霍殿明, 唐睿. 经济增长、区域环境污染与环境规制有效性——基于京津冀地区的实证分析[J]. 资源科学, 2020, 42(12): 2341-2353. |
[5] | 严良,熊伟伟,王小林,王腾. 供需错配下能源替代路径优化[J]. 资源科学, 2019, 41(9): 1655-1664. |
[6] | 贺玲, 崔琦, 陈浩, 宋涛. 基于CGE模型的中国煤炭产能政策优化[J]. 资源科学, 2019, 41(6): 1024-1034. |
[7] | 贾冯睿, 郎晨, 刘广鑫, 孙琪, 马丹竹, 岳强. 基于物质流分析的中国金属铜资源生态效率研究[J]. 资源科学, 2018, 40(9): 1706-1715. |
[8] | 陈睿, 饶政华, 刘继雄, 谌盈盈, 廖胜明. 基于LEAP模型的长沙市能源需求预测及对策研究[J]. 资源科学, 2017, 39(3): 482-489. |
[9] | 张红丽, 沈镭, 李艳梅. 京津冀经济活动隐含的碳排放转移——基于多区域投入产出模型的分析[J]. 资源科学, 2017, 39(12): 2287-2298. |
[10] | 曹植, 沈镭, 刘立涛, 钟帅, 刘刚. 基于自下而上方法的中国水泥生产碳排放强度演变趋势分析[J]. 资源科学, 2017, 39(12): 2344-2357. |
[11] | 刘强, 田川, 郑晓奇, 陈怡. 中国电力行业碳减排相关政策评价[J]. 资源科学, 2017, 39(12): 2368-2376. |
[12] | 曲建升, 刘莉娜, 曾静静, 李恒吉. 中国居民生活碳排放增长路径研究[J]. 资源科学, 2017, 39(12): 2389-2398. |
[13] | 刘洋, 郑景云, 葛全胜, 王芳. 低碳发展背景下中国温室气体排放变化及其对全球减排的贡献[J]. 资源科学, 2017, 39(12): 2399-2407. |
[14] | 王勇, 王恩东, 毕莹. 不同情景下碳排放达峰对中国经济的影响——基于CGE模型的分析[J]. 资源科学, 2017, 39(10): 1896-1908. |
[15] | 朱宇恩, 李丽芬, 贺思思, 李华, 王云. 基于IPAT模型和情景分析法的山西省碳排放峰值年预测[J]. 资源科学, 2016, 38(12): 2316-2325. |
|