资源科学 ›› 2022, Vol. 44 ›› Issue (3): 570-582.doi: 10.18402/resci.2022.03.11
收稿日期:
2021-04-14
修回日期:
2021-06-30
出版日期:
2022-03-25
发布日期:
2022-05-25
通讯作者:
丁黎黎,女,山东五莲人,教授,博士生导师,研究方向为绿色发展与海洋经济。E-mail: llding@ouc.edu.cn作者简介:
桑丹丹,女,山东聊城人,博士研究生,研究方向为资源开发与国民经济可持续发展。E-mail: 1531227944@qq.com
基金资助:
SANG Dandan(), WANG Yuanyue, DING Lili(
)
Received:
2021-04-14
Revised:
2021-06-30
Online:
2022-03-25
Published:
2022-05-25
摘要:
中间品贸易隐含能源要素与碳排放所带来的产业发展影响问题已开始引起重视。本文从环境友好全球价值链视角出发,将增加值核算方法与SupSBM模型相结合,分别测算出2000—2014年中国和美国两个贸易强国产业部门整体及三次产业的全要素生产率、要素投入效率及碳排放效率。研究发现:①美国整体产业部门的全要素生产率高于中国,但是这种差距逐渐变小。主要归因于中国第一产业、第三产业国内劳动投入效率的提升。②按年平均统计,中国整体产业部门国内劳动投入效率高于美国,而其他要素投入效率均低于美国。③按年平均统计,与美国相比,中国第三产业发展向环境友好方向演变,但第一、第二产业环境友好发展不显著,有待进一步提高。因此,以政策为引导,补齐产业部门投入产出效率短板,扩大产业链间效率溢出效应,是实现中国产业部门环境友好全球价值链视角下全要素生产率提升的关键。
桑丹丹, 王元月, 丁黎黎. 中美产业部门全要素生产率比较——基于环境友好全球价值链视角[J]. 资源科学, 2022, 44(3): 570-582.
SANG Dandan, WANG Yuanyue, DING Lili. Comparison of total factor productivity between industrial sectors in China and the United States: From the perspective of environmentally friendly global value chains[J]. Resources Science, 2022, 44(3): 570-582.
表1
按产业平均统计的中国和美国整体产业部门的全要素生产率、要素投入效率、碳排放效率
行业 | 全要素生产率 | 要素投入效率 | 碳排放效率 | 行业 | 全要素生产率 | 要素投入效率 | 碳排放效率 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CHNE | USAE | CHN_X | USA_X | CHN_b | USA_b | CHNE | USAE | CHN_X | USA_X | CHN_b | USA_b | ||||||
r1 | 0.166 | 0.174 | 0.245 | 0.270 | 0.235 | 0.168 | r27 | 0.215 | 0.958 | 0.338 | 0.968 | 0.133 | 0.950 | ||||
r3 | 0.198 | 0.240 | 0.278 | 0.343 | 0.313 | 0.353 | r29 | 0.409 | 1.054 | 0.529 | 1.067 | 0.451 | 1.009 | ||||
r4 | 0.268 | 0.898 | 0.394 | 0.938 | 0.240 | 0.854 | r30 | 0.401 | 0.694 | 0.520 | 0.798 | 0.449 | 0.706 | ||||
r5 | 0.201 | 0.222 | 0.296 | 0.344 | 0.262 | 0.180 | r31 | 0.255 | 0.185 | 0.374 | 0.289 | 0.299 | 0.161 | ||||
r6 | 0.173 | 0.182 | 0.267 | 0.283 | 0.187 | 0.170 | r32 | 0.202 | 0.204 | 0.308 | 0.325 | 0.207 | 0.110 | ||||
r7 | 0.164 | 0.187 | 0.252 | 0.291 | 0.188 | 0.168 | r33 | 0.181 | 0.177 | 0.280 | 0.282 | 0.172 | 0.106 | ||||
r8 | 0.161 | 0.196 | 0.251 | 0.311 | 0.158 | 0.120 | r34 | 0.183 | 0.303 | 0.278 | 0.433 | 0.213 | 0.349 | ||||
r9 | 0.186 | 0.220 | 0.282 | 0.336 | 0.212 | 0.205 | r35 | 0.267 | 0.275 | 0.389 | 0.398 | 0.310 | 0.324 | ||||
r10 | 0.791 | 1.098 | 0.818 | 1.125 | 0.780 | 1.000 | r36 | 0.248 | 0.291 | 0.356 | 0.423 | 0.304 | 0.318 | ||||
r11 | 0.181 | 0.986 | 0.283 | 1.004 | 0.132 | 0.967 | r39 | 0.360 | 0.904 | 0.490 | 0.937 | 0.452 | 0.920 | ||||
r12 | 0.216 | 1.017 | 0.323 | 1.022 | 0.253 | 1.000 | r40 | 0.276 | 0.546 | 0.395 | 0.673 | 0.345 | 0.605 | ||||
r13 | 0.154 | 0.205 | 0.241 | 0.322 | 0.140 | 0.138 | r41 | 1.374 | 1.113 | 1.460 | 1.140 | 1.072 | 1.041 | ||||
r15 | 0.176 | 0.192 | 0.279 | 0.310 | 0.117 | 0.079 | r42 | 0.590 | 1.747 | 0.692 | 1.918 | 0.583 | 1.148 | ||||
r16 | 0.177 | 0.217 | 0.280 | 0.340 | 0.134 | 0.147 | r44 | 1.551 | 1.237 | 1.677 | 1.302 | 1.110 | 1.010 | ||||
r17 | 0.369 | 0.773 | 0.459 | 0.829 | 0.352 | 0.789 | r45 | 0.230 | 0.626 | 0.339 | 0.742 | 0.283 | 0.701 | ||||
r18 | 0.190 | 0.239 | 0.297 | 0.370 | 0.149 | 0.169 | r47 | 0.248 | 0.479 | 0.371 | 0.627 | 0.254 | 0.525 | ||||
r19 | 0.222 | 0.230 | 0.342 | 0.356 | 0.177 | 0.172 | r49 | 0.409 | 0.479 | 0.522 | 0.627 | 0.448 | 0.525 | ||||
r20 | 0.239 | 0.380 | 0.366 | 0.506 | 0.197 | 0.329 | r50 | 0.283 | 0.430 | 0.414 | 0.566 | 0.304 | 0.514 | ||||
r21 | 0.277 | 0.444 | 0.392 | 0.562 | 0.232 | 0.412 | r51 | 0.465 | 0.249 | 0.605 | 0.361 | 0.444 | 0.324 | ||||
r22 | 0.197 | 0.244 | 0.302 | 0.369 | 0.196 | 0.223 | r52 | 0.249 | 0.316 | 0.365 | 0.455 | 0.268 | 0.335 | ||||
r24 | 0.545 | 0.482 | 0.623 | 0.681 | 0.496 | 0.351 | r53 | 0.281 | 0.351 | 0.413 | 0.490 | 0.262 | 0.404 | ||||
r25 | 0.290 | 0.543 | 0.410 | 0.715 | 0.239 | 0.437 | r54 | 0.128 | 0.373 | 0.197 | 0.510 | 0.188 | 0.442 |
[1] | Tone K. Dealing with Undesirable Outputs in Dea: A Slacks-Based Measure (Sbm) Approach[R]. GRIPS Research Report Series, 2004. |
[2] | 周敏, 王腾, 严良, 等. 财政分权、经济竞争对中国能源生态效率影响异质性研究[J]. 资源科学, 2019, 41(3): 532-545. |
Zhou M, Wang T, Yan L, et al. Heterogeneity in the influence of fiscal decentralization and economic competition on China's energy ecological efficiency[J]. Resources Science, 2019, 41(3): 532-545.] | |
[3] | 张士强, 孟璐莎, 李跃. 能源产能空间集聚对区域能源效率的影响[J]. 中国人口·资源与环境, 2021, 31(5): 58-66. |
[ Zhang S Q, Meng L S, Li Y. Impact of spatial agglomeration of energy production capacity on regional energy efficiency[J]. China population, resources and environment, 2021, 31(5) : 58-66.] | |
[4] | 魏楚, 杜立民, 沈满洪. 中国能否实现节能减排目标: 基于DEA方法的评价与模拟[J]. 世界经济, 2010, 33(3): 141-160. |
Wei C, Du L M, Shen M H. Are China's energy-saving and emission reduction targets feasible: An evaluation and simulation analysis based on DEA[J]. The Journal of World Economy, 2010, 33(3): 141-160.] | |
[5] | 郭姣, 李健. 中国三大城市群全要素能源效率与节能减排潜力研究[J]. 干旱区资源与环境, 2019, 33(11): 17-24. |
Guo J, Li J. Total-factor energy efficiency and the potentials of energy conservation and emission reduction in China's three urban agglomerations[J]. Journal of Arid Land Resources and Environment, 2019, 33(11): 17-24.] | |
[6] |
Zhao P J, Zeng L E, Lu H Y, et al. Green economic efficiency and its influencing factors in China from 2008 to 2017: Based on the Super-SBM model with undesirable outputs and spatial Dubin model[J]. Science of the Total Environment, 2020, DOI: 10.1016/j.scitotenv.2020.140026.
doi: 10.1016/j.scitotenv.2020.140026 |
[7] |
王少剑, 高爽, 黄永源, 等. 基于超效率SBM模型的中国城市碳排放绩效时空演变格局及预测[J]. 地理学报, 2020, 75(6): 1316-1330.
doi: 10.11821/dlxb202006016 |
[ Wang S J, Gao S, Huang Y Y, et al. Spatio-temporal evolution and trend prediction of urban carbon emission performance in China based on super-efficiency SBM model[J]. Acta Geographica Sinica, 2020, 75(6): 1316-1330.] | |
[8] | 侯孟阳, 姚顺波. 空间视角下中国农业生态效率的收敛性与分异特征[J]. 中国人口·资源与环境, 2019, 29(4): 116-126. |
[ Hou M Y, Yao S B. Convergence and differentiation characteristics on agro-ecological efficiency in China from a spatial perspective[J]. China Population, Resources and Environment, 2019, 29(4): 116-126.] | |
[9] | 关伟, 许淑婷, 郭岫垚. 黄河流域能源综合效率的时空演变与驱动因素[J]. 资源科学, 2020, 42(1): 150-158. |
Guan W, Xu S T, Guo X Y. Spatiotemporal change and driving factors of comprehensive energy efficiency in the Yellow River Basin[J]. Resources Science, 2020, 42(1): 150-158.] | |
[10] | Song M L, Guan Y Y. The electronic government performance of environmental protection administrations in Anhui Province, China[J]. Technological Forecasting & Social Change, 2015, 96(7): 79-88. |
[11] |
Xiao C M, Wang Z, Shi W F, et al. Sectoral energy-environmental efficiency and its influencing factors in China: Based on S-U-SBM model and panel regression model[J]. Journal of Cleaner Production, 2018, 182: 545-552.
doi: 10.1016/j.jclepro.2018.02.033 |
[12] |
李虹, 王帅. 需求侧视角下中国隐含能源消费量及强度的影响因素[J]. 资源科学, 2021, 43(9): 1728-1742.
doi: 10.18402/resci.2021.09.02 |
[ Li H, Wang S. Research on influencing factors of China's energy consumption and intensity: Based on the demand-side perspective[J]. Resources Science, 2021, 43(9): 1728-1742.] | |
[13] |
郭珊, 韩梦瑶, 杨玉浦. 中国省际隐含能源流动及能效冗余解析[J]. 资源科学, 2021, 43(4): 733-744.
doi: 10.18402/resci.2021.04.08 |
[ Guo S, Han M Y, Yang Y P. Multiregional embodied energy flows and energy efficiency redundancy in China[J]. Resources Science, 2021, 43(4): 733-744.] | |
[14] | 高鹏, 岳书敬. 中国产业部门全要素隐含能源效率的测度研究[J]. 数量经济技术经济研究, 2020, 37(11): 61-80. |
[ Gao P, Yue S J. Measurement of total-factor embodied energy efficiency of China's industry sectors[J]. The Journal of Quantitative & Technical Economics, 2020, 37(11): 61-80.] | |
[15] | 黄群慧, 倪红福. 中国经济国内国际双循环的测度分析: 兼论新发展格局的本质特征[J]. 管理世界, 2021, 37(12): 40-58. |
Huang Q H, Ni H F. Measurement of domestic and international double cycle of China's economy: The essential characteristics of the new development pattern[J]. Management World, 2021, 37(12): 40-58.] | |
[16] | Wang Z, Wei S J, Yu X D, et al. Measures of Participation in Global Value Chains and Global Business Cycles[R]. National Bureau of Economic Research Working Paper, 2017. |
[17] | 蔡礼辉, 张朕, 朱磊. 全球价值链嵌入与二氧化碳排放: 来自中国工业面板数据的经验研究[J]. 国际贸易问题, 2020, (4): 86-104. |
Cai L H, Zhang Z, Zhu L. Global Value Chain embeddedness and carbon dioxide emissions: An empirical study based on Panel Data of China's industries[J]. Journal of International Trade, 2020, (4): 86-104.] | |
[18] | 郑玉, 姜青克. 全球价值链双向参与下的生产率效应: 基于WIOD数据库的实证研究[J]. 财贸研究, 2019, 30(8): 26-42. |
[ Zheng Y, Jiang Q K. Effect of two-way participation of global value chains on productivity: Empirical research based on the World Input-Output Database[J]. Finance and Trade Research, 2019, 30(8): 26-42.] | |
[19] | 李焱, 李佳蔚, 王炜瀚, 等. 全球价值链嵌入对碳排放效率的影响机制: “一带一路”沿线国家制造业的证据与启示[J]. 中国人口·资源与环境, 2021, 31(7): 15-26. |
[ Li Y, Li J W, Wang W H, et al. Effect and mechanism of global value chain embedding on carbon emission efficiency: Evidence and implications from the manufacturing industries in the Belt and Road countries[J]. China Population, Resources and Environment, 2021, 31(7): 15-26.] | |
[20] |
Sun C W, Li Z, Ma T M, et al. Carbon efficiency and international specialization position: Evidence from global value chain position index of manufacture[J]. Energy Policy, 2019, 128(5): 235-242.
doi: 10.1016/j.enpol.2018.12.058 |
[21] | 许冬兰, 韩婧彤. 双环流价值链嵌入对低碳全要素生产率的影响效应研究[J]. 中国地质大学学报(社会科学版), 2022, 22(1): 99-114. |
Xu D L, Han J T. The effect of dual circulation value chain embeddedness on low carbon total factor productivity[J]. Journal of China University of Geosciences (Social Sciences Edition), 2022, 22(1): 99-114.] | |
[22] | 陈颂, 卢晨. 国际产品内分工对中国工业行业环境技术效率的影响效应研究[J]. 国际贸易问题, 2019, (12): 46-60. |
[ Chen S, Lu C. Study on the effect of international intra-product specialization on the environmental technological efficiency of Chinese industries[J]. Journal of International Trade, 2019, (12): 46-60.] | |
[23] | 许冬兰, 于发辉, 张敏. 全球价值链嵌入能否提升中国工业的低碳全要素生产率[J]. 世界经济研究, 2019, (8): 60-72. |
[ Xu D L, Yu F H, Zhang M. Can Global Value Chain participation promote the low-carbon total factor productivity of industry in China[J]. World Economy Studies, 2019, (8): 60-72.] | |
[24] | 桑丹丹, 王元月, 丁黎黎. 中美制造业环境友好型全球价值链地位的测算: 基于世界投入产出表及其环境账户[J]. 当代财经, 2020, (8): 101-113. |
Sang D D, Wang Y Y, Ding L L. Estimation of the environmental friendly global value chain position for China and USA manufacturing industries: Based on world input-output tables and their environmental accounts[J]. Contemporary Finance & Economics, 2020, (8): 101-113.] | |
[25] | Grifell-Tatjé E, Lovell C A K, Sickles R C, et al. The Oxford Handbook of Productivity Analysis[M]. New York: Oxford University Press, 2018. |
[26] |
Hu J L, Wang S C. Total-factor energy efficiency of regions in China[J]. Energy Policy, 2006, 34(17): 3206-3217.
doi: 10.1016/j.enpol.2005.06.015 |
[27] | 王有森. 中国工业出口产品绿色全要素生产效率评价研究: 基于产业关联视角[D]. 上海: 上海大学, 2018. |
[ Wang Y S. Research on the Evaluation of Green Total Factor Productivity of China's Industrial Export Products: Based on Interindustry Linkage[D]. Shanghai: Shanghai University, 2018] | |
[28] | 谢雨蓉, 高咏玲, 王庆云. 经济全球化背景下的国际物流格局演变[J]. 宏观经济研究, 2020, (2): 102-111. |
Xie Y R, Gao Y L, Wang Q Y. The evolution of international logistics pattern in the context of economic globalization[J]. Macroeconomics, 2020, (2): 102-111.] | |
[29] | 朱燕. 马克思主义分工理论视角下两种经济全球化模式比较研究[J]. 马克思主义研究, 2017, (10): 52-59. |
[ Zhu Y. A comparative study of two modes of economic globalization from the perspective of Marxist theory of the division of labor[J]. Studies on Marxism, 2017, (10): 52-59.] | |
[30] | 包伟杰. 中美两国产业结构演进驱动因素比较研究[D]. 昆明: 云南大学, 2018. |
[ Bao W J. A Comparative Study on the Driving Factors of Industrial Structure Evolution between China and the United States[D]. Kunming: Yunnan University, 2018.] | |
[31] | 赵玉林, 谷军健. 中美制造业发展质量的测度与比较研究[J]. 数量经济技术经济研究, 2018, 35(12): 116-133. |
[ Zhao Y L, Gu J J. Measurement and comparative of the development quality in manufacturing between China and the US[J]. The Journal of Quantitative & Technical Economics, 2018, 35(12): 116-133.] | |
[32] | 贺京同, 杨垚立. 素质提高、结构调整与产业升级: 基于中、美两国三次产业的对比[J]. 经济与管理研究, 2016, 37(3): 54-61. |
[ He J T, Yang Y L. Quality improvement, structural adjustment and industrial upgrading: Based on motion of industry growth in China and America[J]. Research on Economics and Management, 2016, 37(3): 54-61.] | |
[33] | Rahman J, Zhao T. Export Performance in Europe: What do We Know from Supply Links[R]. Washington: International Monetary Fund Working Paper, 2013. |
[1] | 李荣杰, 李娜, 阎晓. 电力市场一体化对地区绿色经济效率的影响机制[J]. 资源科学, 2022, 44(3): 523-535. |
[2] | 郑明贵, 董娟, 钟昌标. 资本深化对中国资源型企业全要素生产率的影响[J]. 资源科学, 2022, 44(3): 536-553. |
[3] | 于立宏, 金玉健. 中国采矿业绿色发展的动力特征与政策启示——基于企业异质性视角[J]. 资源科学, 2022, 44(3): 554-569. |
[4] | 程建, 朱道林, 赵江萌, 张晖. 中国土地资本化问题研究综述[J]. 资源科学, 2022, 44(2): 221-231. |
[5] | 谭清华, 刘玉洁, 宋献方, 潘韬. 中国太阳辐射时空变化及不同时间尺度Ångström-Prescott模型校正参数适用性比较[J]. 资源科学, 2022, 44(2): 287-298. |
[6] | 高婧, 曹宝明, 李宁. 小麦最低收购价政策对化肥施用强度的影响——基于农地权属的调节效应[J]. 资源科学, 2022, 44(2): 320-333. |
[7] | 吴海霞, 郝含涛, 葛岩. 粮食主产区政策对农业环境全要素生产率的效应评估[J]. 资源科学, 2022, 44(2): 334-349. |
[8] | 何瑶, 杨永春, 郭建科. 中断模拟下的中国沿海集装箱港口航运网络脆弱性[J]. 资源科学, 2022, 44(2): 414-424. |
[9] | 王凯, 郭鑫, 甘畅, 唐小惠, 刘浩龙. 中国省域科技创新与旅游业高质量发展水平及其互动关系[J]. 资源科学, 2022, 44(1): 114-126. |
[10] | 覃小华, 李星明, 时朋飞, 唐明贵. 中国西部地区旅游环境效率时空分异及影响因素[J]. 资源科学, 2022, 44(1): 143-155. |
[11] | 孙慧, 王慧, 肖涵月, 辛龙. 异质型责任主体的环境协同治理效果[J]. 资源科学, 2022, 44(1): 15-31. |
[12] | 李虹, 王帅, 李晨光, 陈挺. 电价调整对宏观经济及产业结构的影响[J]. 资源科学, 2022, 44(1): 156-168. |
[13] | 张长征, 李嘉雯, 孙杰. 农田水利基础设施投资缺口对粮食生产效率损失的影响[J]. 资源科学, 2022, 44(1): 169-180. |
[14] | 祝孔超, 赵媛, 姚亚兵, 崔盼盼, 鄢继尧. 全球稀土进口竞争格局分析及潜在贸易联系预测[J]. 资源科学, 2022, 44(1): 70-84. |
[15] | 江文曲, 李晓云, 刘楚杰, 孙倩. 城乡居民膳食结构变化对中国水资源需求的影响——基于营养均衡的视角[J]. 资源科学, 2021, 43(8): 1662-1674. |
|