资源科学 ›› 2022, Vol. 44 ›› Issue (2): 334-349.doi: 10.18402/resci.2022.02.10
收稿日期:
2021-06-03
修回日期:
2021-08-30
出版日期:
2022-02-25
发布日期:
2022-04-13
通讯作者:
葛岩,男,北京人,博士,副教授,研究方向为时间序列分析。E-mail: machopku@163.com作者简介:
吴海霞,女,山东潍坊人,博士,副研究员,研究方向为绿色农业与绿色农产品。E-mail: hxia007@126.com
基金资助:
WU Haixia1(), HAO Hantao2, GE Yan3(
)
Received:
2021-06-03
Revised:
2021-08-30
Online:
2022-02-25
Published:
2022-04-13
摘要:
随着中国农业发展进入“瓶颈期”,粮食主产区政策在保障国家主要农产品安全的前提下,能否进一步促进农业转型升级、提高农业环境全要素生产率亟待研究。本文将2004年设立粮食主产区作为一次准自然实验,在考虑农业面源污染等非期望产出的基础上,运用SBM-GML指数及双重差分法,探究了粮食主产区政策对农业环境全要素生产率的影响。研究表明:①粮食主产区的设立显著抑制了农业环境全要素生产率的增长,且忽视环境因素容易低估政策效应。具体来看,该政策提高农业纯(技术)效率的同时抑制了纯技术进步和规模效率的提高。②作用机制分析表明,粮食主产区政策通过提高粮食播种面积和化肥施用量抑制了农业环境全要素生产率的增长,但农业机械化的推广则会改善农业环境全要素生产率。③异质性分析表明,产粮大省本身所具有的禀赋优势会削弱粮食主产区政策整体对农业环境全要素生产率的抑制。而且,从粮食种植结构来看,该政策对农业环境全要素生产率的抑制主要发生在水稻种植区域,对小麦和玉米种植区域影响相对较弱。进一步调整和完善粮食主产区政策,对于转变农业发展方式、实现农业可持续发展具有重要意义。
吴海霞, 郝含涛, 葛岩. 粮食主产区政策对农业环境全要素生产率的效应评估[J]. 资源科学, 2022, 44(2): 334-349.
WU Haixia, HAO Hantao, GE Yan. Effect evaluation of the main grain producing area policy on agricultural environmental total factor productivity[J]. Resources Science, 2022, 44(2): 334-349.
表1
变量描述性统计
变量 | 符号 | 单位 | 观测数 | 均值 | 标准差 | 最大值 | 最小值 |
---|---|---|---|---|---|---|---|
化肥投入 | Fertilizer | 万t | 672 | 178.76 | 130.52 | 716.10 | 5.80 |
土地投入 | Land | 千hm2 | 672 | 5876.45 | 3383.80 | 14783.40 | 103.80 |
劳动投入 | Labor | 万人 | 672 | 680.92 | 446.35 | 2273.96 | 17.55 |
机械投入 | Machine | 万kw | 672 | 2638.95 | 2537.40 | 13353.00 | 125.70 |
灌溉投入 | Water | 千hm2 | 672 | 2040.35 | 1409.99 | 6119.60 | 109.70 |
农业产值 | AgriGDP | 亿元 | 672 | 256.09 | 179.02 | 844.60 | 9.20 |
总氮流失 | TN | t | 672 | 12358.98 | 14363.36 | 70979.00 | 179.00 |
总磷流失 | TP | t | 672 | 1492.55 | 1761.95 | 10931.00 | 38.00 |
农药流失 | Pesticide | t | 672 | 29.95 | 29.50 | 110.42 | 0.33 |
表2
1991—2018年主产区与非主产区农业绿色全要素生产率及差异
年份 | 主产区 | 非主产区 | 年份 | 主产区 | 非主产区 |
---|---|---|---|---|---|
1991 | 1.0000 | 1.0000 | 2004—2005 | 0.7448 | 0.7248 |
1991—1992 | 0.8055 | 0.7987 | 2005—2006 | 0.7878 | 0.7779 |
1992—1993 | 0.7033 | 0.6675 | 2006—2007 | 0.8863 | 0.8210 |
1993—1994 | 0.6326 | 0.5860 | 2007—2008 | 0.9163 | 0.9045 |
1994—1995 | 0.5290 | 0.5087 | 2008—2009 | 0.9327 | 0.8759 |
1995—1996 | 0.5387 | 0.5174 | 2009—2010 | 0.9450 | 0.9295 |
1996—1997 | 0.6110 | 0.5886 | 2010—2011 | 0.9395 | 0.9338 |
1997—1998 | 0.6242 | 0.5883 | 2011—2012 | 1.0078 | 0.9955 |
1998—1999 | 0.6657 | 0.6131 | 2012—2013 | 1.0832 | 1.1109 |
1999—2000 | 0.7706 | 0.6898 | 2013—2014 | 1.1075 | 1.1536 |
2000—2001 | 0.8183 | 0.7019 | 2014—2015 | 1.1421 | 1.1961 |
2001—2002 | 0.8229 | 0.7725 | 2015—2016 | 1.0993 | 1.2910 |
2002—2003 | 0.8060 | 0.7628 | 2016—2017 | 1.1183 | 1.4205 |
2003—2004 | 0.7219 | 0.6668 | 2017—2018 | 1.2993 | 1.6413 |
平均变动率 | -0.0248 | -0.0307 | 平均变动率 | 0.0437 | 0.0649 |
表3
DID基准模型结果
变量 | ETFP | PEC | PTC | SEC | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | ||||
group×post | -0.1258*** (0.0271) | -0.1018*** (0.0269) | 0.1434** (0.0569) | 0.1674*** (0.0633) | -0.1098*** (0.0300) | -0.1480*** (0.0370) | -0.1330*** (0.0311) | -0.1849*** (0.0360) | |||
lnIncome | -2.5205*** (0.4451) | -2.0501*** (0.5934) | -1.9442*** (0.5998) | -1.4497** (0.7184) | 0.5284 (0.3749) | -0.2676 (0.4399) | -0.9115*** (0.3427) | -1.9965*** (0.4731) | |||
lnIncome2 | 0.1987*** (0.0329) | 0.1619*** (0.0443) | 0.1708*** (0.0440) | 0.1325** (0.0564) | -0.0226 (0.0261) | 0.0389 (0.0320) | 0.0377* (0.0222) | 0.1214*** (0.0359) | |||
lnAindex | 0.0459 (0.0840) | 0.0519 (0.0842) | -0.4071** (0.1637) | -0.4093** (0.1636) | 0.1206 (0.0845) | 0.1270 (0.0834) | 0.2813*** (0.0918) | 0.2915*** (0.0920) | |||
lnMindex | 1.0194*** (0.1709) | 1.0566*** (0.1678) | 0.7413** (0.2907) | 0.7535** (0.3000) | -0.1082 (0.1765) | -0.1186 (0.1715) | 0.5421*** (0.2094) | 0.5327** (0.2174) | |||
Finance | 0.4825 (0.6774) | 0.8824 (0.6688) | 0.1451 (1.0226) | 0.3413 (1.1077) | 0.9879 (0.6099) | 0.7489 (0.6061) | -0.5753 (0.6770) | -0.8620 (0.7067) | |||
Incomestr | -0.5335*** (0.1769) | -0.4417** (0.1803) | -1.3573*** (0.3658) | -1.3014*** (0.3783) | 0.7840*** (0.2013) | 0.7080*** (0.2002) | -0.0049 (0.1706) | -0.1015 (0.1670) | |||
Open | -0.0617 (0.0594) | -0.0615 (0.0603) | 0.0538 (0.0730) | 0.0705 (0.0725) | -0.0641 (0.0480) | -0.0966** (0.0459) | -0.0159 (0.0385) | -0.0631 (0.0428) | |||
Distribution | -0.0524*** (0.0163) | -0.0563*** (0.0160) | -0.0738 (0.0358) | -0.0764** (0.0365) | 0.0253 (0.0286) | 0.0291 (0.0283) | -0.0116 (0.0278) | -0.0067 (0.0280) | |||
lnPregrain | — | -0.0518 (0.0773) | — | -0.0863 (0.0788) | — | 0.1499** (0.0703) | — | 0.2099*** (0.0648) | |||
Grainstr | — | -2.3565 (2.0909) | — | 0.2024 (3.0455) | — | -1.2440 (1.8146) | — | -2.1627 (1.5096) | |||
cons | 3.8036** (1.6683) | 2.3492 (1.9782) | 4.9237** (2.0678) | 3.6865* (2.1770) | -2.2475 (1.5611) | -0.3559 (1.5511) | 1.7621 (1.4478) | 4.2897** (1.7953) | |||
Observations | 648 | 648 | 648 | 648 | 648 | 648 | 648 | 648 | |||
R2 | 0.8062 | 0.8086 | 0.6951 | 0.6955 | 0.7326 | 0.7358 | 0.8131 | 0.8170 |
表4
农业环境全要素生产率VS传统农业全要素生产率
变量 | ETFP | PEC | PTC | SEC | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | ||||
group×post | -0.1018*** (0.0269) | -0.0750*** (0.0200) | 0.1674*** (0.0633) | 0.0677** (0.0329) | -0.1480*** (0.0370) | -0.0297 (0.0207) | -0.1849*** (0.0360) | -0.1744*** (0.0235) | |||
cons | 2.3492 (1.9782) | 0.4174 (1.2589) | 3.6865* (2.1770) | -4.4471*** (1.4519) | -0.3559 (1.5511) | 5.1222 (0.8789) | 4.2897** (1.7953) | -1.0401 (1.4879) | |||
Control | √ | √ | √ | √ | √ | √ | √ | √ | |||
Observations | 648 | 648 | 648 | 648 | 648 | 648 | 648 | 648 | |||
R2 | 0.8086 | 0.8264 | 0.6955 | 0.6718 | 0.7358 | 0.8591 | 0.8170 | 0.5814 |
表7
安慰剂检验
变量 | 2002年 | 2003年 | |||||||
---|---|---|---|---|---|---|---|---|---|
ETFP | PEC | PTC | SEC | ETFP | PEC | PTC | SEC | ||
group×post | -0.0190 (0.0266) | -0.1169 (0.1000) | 0.0430 (0.0513) | -0.0446 (0.0399) | -0.0268 (0.0360) | -0.0319 (0.1598) | -0.0149 (0.0713) | -0.0566 (0.0560) | |
cons | 3.6991***(1.0373) | -4.2312 (4.5761) | 4.8518** (2.0871) | 2.5620 (2.7060) | 3.6577*** (1.0419) | -4.6838 (4.6092) | 5.0578** (2.1204) | 2.4552 (2.6819) | |
Control | √ | √ | √ | √ | √ | √ | √ | √ | |
Observations | 288 | 288 | 288 | 288 | 288 | 288 | 288 | 288 | |
R2 | 0.8555 | 0.7057 | 0.6920 | 0.8583 | 0.8555 | 0.7040 | 0.6911 | 0.8582 |
表8
回归结果
变量 | Proportion (1) | Meclab (2) | Ferlab (3) | ETFP (4) | PEC (5) | PTC (6) | SEC (7) |
---|---|---|---|---|---|---|---|
group×post | 0.0516*** (0.0062) | 1.2703*** (0.2535) | 0.0316*** (0.0085) | -0.0648** (0.0285) | 0.2229*** (0.0714) | -0.1046*** (0.0365) | -0.1595*** (0.0352) |
Proportion | — | — | — | -1.3224*** (0.1986) | -1.1235*** (0.4121) | -0.6972*** (0.2586) | -0.7054** (0.2757) |
Meclab | — | — | — | 0.0429*** (0.0076) | 0.0289** (0.0125) | -0.0059 (0.0062) | -0.0002 (0.0080) |
Ferlab | — | — | — | -0.7376*** (0.2112) | -1.0824*** (0.2955) | 0.0011 (0.1726) | 0.3553** (0.1555) |
Control | √ | √ | √ | √ | √ | √ | √ |
cons | 2.4033*** (0.2897) | 11.7353 (16.2262) | 2.1364*** (0.5839) | 6.5998*** (1.8871) | 8.3604*** (2.4832) | 1.3866 (1.5921) | 5.2278*** (1.7620) |
Observations | 648 | 648 | 648 | 648 | 648 | 648 | 648 |
R2 | 0.9302 | 0.8743 | 0.9156 | 0.8391 | 0.7043 | 0.7400 | 0.8216 |
表9
总体中介效应和个别中介效应分析
ETFP | PEC | PTC | SEC | |
---|---|---|---|---|
| -0.0370* (0.0219) | -0.0555* (0.0299) | -0.0434*** (0.0161) | -0.0254 (0.0173) |
| -0.0682*** (0.0132) | -0.0579*** (0.0224) | -0.0360** (0.0140) | -0.0364** (0.0149) |
| 0.0545*** (0.0145) | 0.0367** (0.0175) | -0.0075 (0.0081) | -0.0002 (0.0102) |
| -0.0233** (0.0092) | -0.0342*** (0.0131) | 3.4560E-5 (0.0055) | 0.0112* (0.0058) |
表10
异质性分析
变量 | 粮食产量占比 | 粮食结构 | |||||||
---|---|---|---|---|---|---|---|---|---|
ETFP | PEC | PTC | SEC | ETFP | PEC | PTC | SEC | ||
group×post | -0.3927*** (0.0622) | -0.1549 (0.1572) | -0.3120*** (0.0679) | -0.1788*** (0.0604) | -0.0470 (0.0368) | 0.2543** (0.1010) | -0.0998** (0.0465) | -0.2136*** (0.0454) | |
Grainstr | -6.9502*** (1.9588) | -4.8875 (3.1986) | -3.8333** (1.8614) | -2.0667 (1.8166) | — | — | — | — | |
group×post×Grainstr | 5.2830*** (0.9825) | 5.8536** (2.6606) | 2.9778*** (1.0667) | -0.1104 (1.0216) | — | — | — | — | |
Ricestr | — | — | — | — | 0.4574* (0.2752) | -0.4005 (0.4480) | 0.5904* (0.3549) | -0.2228 (0.2077) | |
group×post×Ricestr | — | — | — | — | -0.1475** (0.0585) | -0.1786 (0.1823) | -0.1347** (0.0553) | 0.0829 (0.0564) | |
cons | 1.5777 (1.9398) | 2.8316 (2.2290) | -0.7907 (1.5503) | 4.3059** (1.8450) | 2.2271 (2.0603) | 3.5188 (2.3169) | -1.4558 (1.5195) | 5.1619 (1.7636) | |
Control | √ | √ | √ | √ | √ | √ | √ | √ | |
Observations | 648 | 648 | 648 | 648 | 642 | 642 | 642 | 642 | |
R2 | 0.8162 | 0.6988 | 0.7385 | 0.8170 | 0.8114 | 0.6967 | 0.7401 | 0.8207 |
[1] |
Si R S, Pan S T, Yuan Y X, et al. Assessing the impact of environmental regulation on livestock manure waste recycling: Empirical evidence from households in China[J]. Sustainability, 2019, 11(20):5737-5737.
doi: 10.3390/su11205737 |
[2] | 姜松, 周洁, 邱爽. 适度规模经营是否能抑制农业面源污染: 基于动态门槛面板模型的实证[J]. 农业技术经济, 2021, (7):33-48. |
[ Jiang S, Zhou J, Qiu S. Can appropriate scale operation restrain agricultural non-point source pollution? Empirical study based on dynamic threshold panel model[J]. Journal of Agrotechnical Economics, 2021, (7):33-48.] | |
[3] | 杨万江, 李琪. 稻农化肥减量施用行为的影响因素[J]. 华南农业大学学报(社会科学版), 2017, 16(3):58-66. |
[ Yang W J, Li Q. The impact on less use of chemical fertilizers[J]. Journal of South China Agricultural University (Social Science Edition), 2017, 16(3):58-66.] | |
[4] | 张军伟, 张锦华, 吴方卫. 粮食生产中化肥投入的影响因素研究: 基于Durbin模型的分析[J]. 经济地理, 2018, 38(11):174-182. |
[ Zhang J W, Zhang J H, Wu F W. The influencing factors of fertilizer input in grain production: Based on the Durbin model[J]. Economic Geography, 2018, 38(11):174-182.] | |
[5] | 杨俊, 陈怡. 基于环境因素的中国农业生产率增长研究[J]. 中国人口·资源与环境, 2011, 21(6):153-157. |
[ Yang J, Chen Y. Empirical study on China’s agricultural production growth under the binding of environment[J]. China Population, Resources and Environment, 2011, 21(6):153-157.] | |
[6] | 杜锐, 毛学峰. 基于合成控制法的粮食主产区政策效果评估[J]. 中国软科学, 2017, (6):31-38. |
[ Du R, Mao X F. Estimating the effects of the policies applied in major grain producing areas based on synthetic control method[J]. China Soft Science, 2017, (6):31-38.] | |
[7] | 罗斯炫, 何可, 张俊飚. 增产加剧污染: 基于粮食主产区政策的经验研究[J]. 中国农村经济, 2020, (1):108-131. |
[ Luo S X, He K, Zhang J B. The more grain production, the more fertilizers pollution? Empirical evidence from major grain-producing areas in China[J]. Chinese Rural Economy, 2020, (1):108-131.] | |
[8] | 高鸣, 王颖. 农业补贴政策对粮食安全的影响与改革方向[J]. 华南农业大学学报(社会科学版), 2021, 20(5):14-26. |
[ Gao M, Wang Y. Influence of China’s agricultural subsidy policy on food security and reform direction[J]. Journal of South China Agricultural University (Social Science Edition), 2021, 20(5):14-26.] | |
[9] | 杨芷晴, 孔东民. 我国农业补贴政策变迁、效应评估与制度优化[J]. 改革, 2020, (10):114-127. |
[ Yang Z Q, Kong D M. The evolution, effect and optimization of China’s agricultural subsidy policy[J]. Reform, 2020, (10):114-127.] | |
[10] | 靳欣婷, 孟志兴. 农业补贴对农村家庭创业的影响研究: 基于中国家庭金融调查的实证分析[J]. 世界农业, 2021, (1):112-123. |
[ Jin X T, Meng Z X. Study on the influence of agricultural subsidies on rural family entrepreneurship: Empirical analysis based on household finance survey in China[J]. World Agriculture, 2021, (1):112-123.] | |
[11] | 朱青, 卢成. 财政支农政策与农民收入的实证研究: 基于农业补贴的视角[J]. 暨南学报(哲学社会科学版), 2020, 42(3):67-83. |
[ Zhu Q, Lu C. An empirical investigation into the financial support for agriculture and farmers’ income[J]. Jinan Journal (Philosophy & Social Sciences), 2020, 42(3):67-83.] | |
[12] | 杨秀玉, 乔翠霞. 农业补贴对生态环境的影响: 从化肥使用角度分析[J]. 中国农业资源与区划, 2018, 39(7):47-53. |
[ Yang X Y, Qiao C X. Impacts of agricultural subsidies on ecological environment: From the perspective of fertilizer use[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2018, 39(7):47-53.] | |
[13] | 石志恒, 慕宏杰, 孙艳. 农业补贴对农户参与农业绿色发展的影响研究[J]. 产经评论, 2019, 10(3):144-154. |
[ Shi Z H, Mu H J, Sun Y. A study on the influence of agricultural subsidy on farmer participation in green development of agricultural[J]. Industrial Economic Review, 2019, 10(3):144-154.] | |
[14] | 胡川, 韦院英, 胡威. 农业政策、技术创新与农业碳排放的关系研究[J]. 农业经济问题, 2018, (9):66-75. |
[ Hu C, Wei Y Y, Hu W. Research on the relationship between agricultural policy, technological innovation and agricultural carbon emissions[J]. Issues in Agricultural Economy, 2018, (9):66-75.] | |
[15] | 孙博文. 中国农业补贴政策的多维效应剖析与机制检验[J]. 改革, 2020, (8):102-116. |
[ Sun B W. Multidimensional effect analysis and mechanism test of agricultural subsidy policy in China[J]. Reform, 2020, (8):102-116.] | |
[16] | 魏后凯. 中国农业发展的结构性矛盾及其政策转型[J]. 中国农村经济, 2017, (5):2-17. |
[ Wei H K. Structural contradiction and policy transformation of agricultural development in China[J]. Chinese Rural Economy, 2017, (5):2-17.] | |
[17] | 匡远凤, 彭代彦. 中国农业经济增长绩效、来源与演化[J]. 数量经济技术经济研究, 2020, 37(12):45-65. |
[ Kuang Y F, Peng D Y. Level, source and evolution of China’s agricultural economic growth performance[J]. The Journal of Quantitative & Technical Economics, 2020, 37(12):45-65.] | |
[18] | 展进涛, 徐钰娇. 环境规制、农业绿色生产率与粮食安全[J]. 中国人口·资源与环境, 2019, 29(3):167-176. |
[ Zhan J T, Xu Y J. Environmental regulation, agricultural green TFP and grain security[J]. China Population, Resources and Environment, 2019, 29(3):167-176.] | |
[19] | 李翔, 杨柳. 华东地区农业全要素生产率增长的实证分析: 基于随机前沿生产函数模型[J]. 华中农业大学学报(社会科学版), 2018, (6):62-68. |
[ Li X, Yang L. An empirical analysis of agriculture total factor productivity growth in east China: Based on stochastic frontier production function model[J]. Journal of Huazhong Agricultural University (Social Sciences Edition), 2018, (6):62-68.] | |
[20] | 史常亮, 张益. 中国农业全要素生产率增长收敛吗? 基于空间视角的分析[J]. 内蒙古社会科学, 2021, 42(1):137-146. |
[ Shi C L, Zhang Y. Are China’s agricultural total factor productivity growth convergence? An analysis from a spatial perspective[J]. Inner Mongolia Social Sciences, 2021, 42(1):137-146.] | |
[21] | 朱秋博, 白军飞, 彭超, 等. 信息化提升了农业生产率吗?[J]. 中国农村经济, 2019, (4):22-40. |
[ Zhu Q B, Bai J F, Peng C, et al. Do information communication technologies improve agricultural productivity?[J]. Chinese Rural Economy, 2019, (4):22-40.] | |
[22] |
Chung Y H, Färe R, Grosskopf S. Productivity and undesirable outputs: A directional distance function approach[J]. Journal of Environmental Management, 1997, 51(3):229-240.
doi: 10.1006/jema.1997.0146 |
[23] |
Oh D, Heshmati A. A sequential malmquist-luenberger productivity index: Environmentally sensitive productivity growth considering progressive nature of technology[J]. Energy Economics, 2010, 32(6):1345-1355.
doi: 10.1016/j.eneco.2010.09.003 |
[24] |
Oh D. A global malmquist-luenberger productivity index[J]. Journal of Productivity Analysis, 2010, 34(3):183-197.
doi: 10.1007/s11123-010-0178-y |
[25] |
Tone K. A slacks-based measure of efficiency in data envelopment analysis[J]. European Journal of Operational Research, 2001, 130(3):498-509.
doi: 10.1016/S0377-2217(99)00407-5 |
[26] |
Zofio J L. Malmquist productivity index decompositions: A unifying framework[J]. Applied Economics, 2007, 39(18):2371-2387.
doi: 10.1080/00036840600606260 |
[27] | 杜江, 王锐, 王新华. 环境全要素生产率与农业增长: 基于DEA-GML指数与面板Tobit模型的两阶段分析[J]. 中国农村经济, 2016, (3):65-81. |
[ Du J, Wang R, Wang X H. Environmental total factor productivity and agricultural growth: A two-stage analysis based on the DEA-GML index and the panel Tobit model[J]. Chinese Rural Economy, 2016, (3):65-81.] | |
[28] | 马国群, 谭砚文. 环境规制对农业绿色全要素生产率的影响研究: 基于面板门槛模型的分析[J]. 农业技术经济, 2021, (5):77-92. |
[ Ma G Q, Tan Y W. Impact of environmental regulation on agricultural green total factor productivity: Analysis based on the panel threshold model[J]. Journal of Agrotechnical Economics, 2021, (5):77-92.] | |
[29] | 李健旋. 农村金融发展与农业绿色全要素生产率提升研究[J]. 管理评论, 2021, 33(3):84-95. |
[ Li J X. Rural financial development and the improvement of agricultural green total factor productivity[J]. Management Review, 2021, 33(3):84-95.] | |
[30] | 龚琦, 王雅鹏. 中国农用化肥施用的影响因素: 基于省际面板数据的实证分析[J]. 生态经济, 2011, (2):33-43. |
[ Gong Q, Wang Y P. Influential factors of chemical fertilizer employing in China: Empirical study based on provincial panel data[J]. Ecological Economy, 2011, (2):33-43.] | |
[31] | 孙铖, 周华真, 陈磊, 等. 农田化肥氮磷地表径流污染风险评估[J]. 农业环境科学学报, 2017, 36(7):1266-1273. |
[ Sun C, Zhou H Z, Chen L, et al. The pollution risk assessment of nitrogen and phosphorus loss in surface run off from farmland fertilizer[J]. Journal of Agro-Environment Science, 2017, 36(7):1266-1273.] | |
[32] | 陈嘉, 韦素琼, 陈松林. 开放条件下的闽台农业技术进步研究[J]. 资源科学, 2018, 40(10):1980-1990. |
[ Chen J, Wei S Q, Chen S L. Agricultural development and technological changes in Fujian and Taiwan[J]. Resources Science, 2018, 40(10):1980-1990.] | |
[33] | 柳士顺, 凌文辁. 多重中介模型及其应用[J]. 心里科学, 2009, 32(2):433-435. |
[ Liu S S, Ling W Q. Multiple mediation models and their applications[J]. Psychological Science, 2009, 32(2):433-435.] | |
[34] | 高鸣, 宋洪远. 粮食生产技术效率的空间收敛及功能区差异: 兼论技术扩散的空间涟漪效应[J]. 管理世界, 2014, (7):83-92. |
[ Gao M, Song H Y. Spatial convergence and functional differences of technical efficiency in grain production: On the spatial ripple effect of technology diffusion[J]. Management World, 2014, (7):83-92.] | |
[35] |
王亚辉, 李秀彬, 辛良杰, 等. 中国土地流转的区域差异及其影响因素: 基于2003-2013年农村固定观察点数据[J]. 地理学报, 2018, 73(3):487-502.
doi: 10.11821/dlxb201803008 |
[ Wang Y H, Li X B, Xin L J, et al. Regional differences of land circulation in China and its drivers: Based on 2003-2013 rural fixed observation points data[J]. Acta Geographica Sinica, 2018, 73(3):487-502.] | |
[36] | 王一杰, 邸菲, 辛岭. 中国粮食主产区粮食生产现状、存在问题及政策建议[J]. 农业现代化研究, 2018, 39(1):37-47. |
[ Wang Y J, Di F, Xin L. The status and problems of grain production in the main grain production areas of China and policy suggestions[J]. Research of Agricultural Modernization, 2018, 39(1):37-47.] | |
[37] | 李航飞. 基于数据包络分析的中国农业生产效率区域差异分析[J]. 科技管理研究, 2020, 40(1):59-66. |
[ Li H F. Regional difference analysis of agricultural technology production efficiency in China based on data envelopment analysis[J]. Science and Technology Management Research, 2020, 40(1):59-66.] | |
[38] |
Chaisemartin, Clément de, Xavier D’Haultfoeuille. Two-way fixed effects estimators with heterogeneous treatment effects[J]. American Economic Review, 2020, 110(9):2964-2996.
doi: 10.1257/aer.20181169 |
[39] | 温忠麟, 张雷, 侯杰泰, 等. 中介效应检验程序及其应用[J]. 心理学报, 2004, (5):614-620. |
[ Wen Z L, Zhang L, Hou T J, et al. Testing and application of the mediating effects[J]. Acta Psychologica Sinica, 2004, (5):614-620.] |
[1] | 郑晓舟, 郭晗, 卢山冰. 环境规制、要素区际流动与城市群产业结构调整[J]. 资源科学, 2021, 43(8): 1522-1533. |
[2] | 李煜阳, 陆迁, 贾彬, 刘戴娆. 劳动力外出务工对农户水土保持技术采用的影响——基于集体行动参与的中介效应[J]. 资源科学, 2021, 43(6): 1088-1098. |
[3] | 于智涵, 方丹, 杨谨. 资源型经济转型试验区政策对碳排放的影响评估——以山西省为例[J]. 资源科学, 2021, 43(6): 1178-1192. |
[4] | 罗海平, 邹楠, 胡学英, 王圣云. 1980—2019年中国粮食主产区主要粮食作物气候生产潜力与气候资源利用效率[J]. 资源科学, 2021, 43(6): 1234-1247. |
[5] | 方芗, 周玉娇. 不同类型流动人口的环境友好行为差异——论生活方式的中介作用[J]. 资源科学, 2021, 43(11): 2303-2315. |
[6] | 李晨, 汪琳琳, 邵桂兰. 水产品贸易对渔业碳排放强度的影响——基于中介模型与门槛模型的检验[J]. 资源科学, 2021, 43(10): 2130-2145. |
[7] | 任晓松, 马茜, 刘宇佳, 赵国浩. 碳交易政策对高污染工业企业经济绩效的影响——基于多重中介效应模型的实证分析[J]. 资源科学, 2020, 42(9): 1750-1763. |
[8] | 段伟, 欧阳波. 自然保护区对周边农户多维贫困的影响——基于社会资本的中介效应分析[J]. 资源科学, 2020, 42(6): 1074-1086. |
[9] | 张童朝, 颜廷武, 仇童伟. 年龄对农民跨期绿色农业技术采纳的影响[J]. 资源科学, 2020, 42(6): 1123-1134. |
[10] | 黄元,赵正,杨洁,段梦姣,温亚利. 个体环境态度对城市森林感知和满意度的影响[J]. 资源科学, 2019, 41(9): 1747-1757. |
[11] | 高延雷,张正岩,魏素豪,王志刚. 城镇化对中国粮食安全的影响——基于省区面板数据的实证分析[J]. 资源科学, 2019, 41(8): 1461-1474. |
[12] | 韩家彬, 刘淑云, 张书凤, 刘玉丰. 农业劳动力老龄化对土地规模经营的影响[J]. 资源科学, 2019, 41(12): 2284-2295. |
[13] | 邱俊杰, 任倩, 余劲. 农业劳动力老龄化、农业资本投入与土地利用效率——基于鲁豫皖三省固定农户跟踪调查[J]. 资源科学, 2019, 41(11): 1982-1996. |
[14] | 庞娟, 冉瑞平. 石漠化综合治理促进了当地经济发展吗?——基于广西县域面板数据的DID实证研究[J]. 资源科学, 2019, 41(1): 196-206. |
[15] | 张立新, 朱道林, 谢保鹏, 杜挺, 王兴. 中国粮食主产区耕地利用效率时空格局演变及影响因素——基于180个地级市的实证研究[J]. 资源科学, 2017, 39(4): 608-619. |
|