资源科学 ›› 2022, Vol. 44 ›› Issue (2): 274-286.doi: 10.18402/resci.2022.02.05
收稿日期:
2021-08-20
修回日期:
2021-11-17
出版日期:
2022-02-25
发布日期:
2022-04-13
作者简介:
齐绍洲,男,河南平顶山人,博士,教授,研究方向为气候变化与能源经济学。E-mail: cneuus@126.com
基金资助:
QI Shaozhou1,2,3(), XU Zhenzhen1,2, YANG Zhixuan1,2
Received:
2021-08-20
Revised:
2021-11-17
Online:
2022-02-25
Published:
2022-04-13
摘要:
欧盟启动碳边境调节机制将会影响中国钢铁行业的成本效率,鲜有研究从碳市场角度考虑如何应对其导致的负面影响。基于此,本文构建了两种价格可变的资源分配模型,从碳市场角度研究在短期和长期中国减缓欧盟碳边境调节机制负面影响的碳配额分配策略。本文以中国各省份钢铁行业为例进行成本效率评估和碳配额分配,研究发现:①在短期中国碳价格不变和长期中国碳价格上涨情况下,欧盟碳边境调节机制将会导致行业成本效率下降;②中国出口到欧盟的钢铁产品数量越多则中国钢铁行业成本效率下降的幅度越大,中国碳价格水平越高则钢铁行业的成本效率越稳定;③通过碳市场优化配额分配能有效缓解欧盟碳边境调节机制的负面影响;④在优化碳配额的同时进行能源消费量调整,能够获得对配额总量影响较小的方案。本文研究结论为中国完善碳市场政策、有效应对欧盟碳边境调节机制的挑战提供了有益的政策启示。
齐绍洲, 徐珍珍, 杨芷萱. 欧盟碳边境调节机制下中国钢铁行业的碳配额分配策略[J]. 资源科学, 2022, 44(2): 274-286.
QI Shaozhou, XU Zhenzhen, YANG Zhixuan. Carbon allowance allocation strategy in China’s steel industry under the EU carbon border adjustment mechanism[J]. Resources Science, 2022, 44(2): 274-286.
表1
DEA模型的投入和产出指标
作者 | 研究层面 | 投入 | 产出 | 人口或劳动力是投入或产出? | CO2或温室气体是投入或产出? |
---|---|---|---|---|---|
Lei等[ | 省 | 资本存量、人口和能源消耗 | GDP、CO2 | 投入 | 产出 |
Cai等[ | 省 | CO2 | GDP、人口 | 产出 | 投入 |
Cucchiella等[ | 国家 | 温室气体排放、最终能源消耗、可再生能源消耗 | GDP、人口 | 产出 | 投入 |
Pang等[ | 国家 | 人口、能源消耗 | GDP、CO2 | 投入 | 产出 |
Nolan等[ | 行业 | 技术效率 | 劳动力、非柴油燃料、安全事故和路线里程 | 产出 | |
Oum等[ | 行业 | 劳动力、资本、运营成本和乘客花费的时间 | 客运公里数、CO2 | 投入 | 产出 |
Zhang等[ | 行业 | CO2 | 能源消耗、工业产值 | 投入 | |
Ma等[ | 企业 | 装机容量、CO2 | 发电量 | 投入 |
[1] | 李季, 王宇. 边境碳调节对中国EITE产业竞争力和碳泄漏的影响[J]. 中国人口·资源与环境, 2016, 26(12):87-93. |
[ Li J, Wang Y. Effects of border carbon adjustment to competitiveness of China’s EITE industries and carbon leakage[J]. China Population, Resources and Environment, 2016, 26(12):87-93.] | |
[2] | 吴杨伟, 王胜, 李晓丹. 国际贸易中的关税吸收问题研究进展: 兼述一个理论框架[J]. 国际贸易问题, 2018, (5):160-174. |
[ Wu Y W, Wang S, Li X D. Research progress on tariff absorption in international trade: And a theoretical framework[J]. Journal of International Trade, 2018, (5):160-174.] | |
[3] | 赵永斌, 丛建辉, 杨军, 等. 中国碳市场配额分配方法探索[J]. 资源科学, 2019, 41(5):872-883. |
[ Zhao Y B, Cong J H, Yang J, et al. An innovative allowance allocation method in China’s unified national emissions trading scheme[J]. Resources Science, 2019, 41(5):872-883.] | |
[4] |
韩梦瑶, 刘卫东, 谢漪甜, 等. 中国省域碳排放的区域差异及脱钩趋势演变[J]. 资源科学, 2021, 43(4):710-721.
doi: 10.18402/resci.2021.04.06 |
[ Han M Y, Liu W D, Xie Y T, et al. Regional disparity and decoupling evolution of China’s carbon emissions by province[J]. Resources Science, 2021, 43(4):710-721.] | |
[5] |
姜宛贝, 刘卫东. 中国经济空间格局演变及其CO2排放效应[J]. 资源科学, 2021, 43(4):722-732.
doi: 10.18402/resci.2021.04.07 |
[ Jiang W B, Liu W D. Effect of change of the spatial pattern of economic activities on CO2 emissions in China[J]. Resources Science, 2021, 43(4):722-732.] | |
[6] |
屈秋实, 王礼茂, 王博, 等. 中国有色金属产业链碳排放及碳减排潜力省际差异[J]. 资源科学, 2021, 43(4):756-763.
doi: 10.18402/resci.2021.04.10 |
[ Qu Q S, Wang L M, Wang B, et al. Carbon emissions of China’s nonferrous metal industry from the view of industrial chain and provincial differences[J]. Resources Science, 2021, 43(4):756-763.] | |
[7] | 邵帅, 张可, 豆建民. 经济集聚的节能减排效应: 理论与中国经验[J]. 管理世界, 2019, 35(1):36-60. |
[ Shao S, Zhang K, Dou J M. Effects of economic agglomeration on energy saving and emission reduction: Theory and empirical evidence from China[J]. Management World, 2019, 35(1):36-60.] | |
[8] |
Böhringer C, Schneider J, Asane-Otoo E. Trade in carbon and carbon tariffs[J]. Environmental and Resource Economics, 2021, 78:669-708.
doi: 10.1007/s10640-021-00548-y |
[9] |
Al Khourdajie A, Finus M. Measures to enhance the effectiveness of international climate agreements: The case of border carbon adjustments[J]. European Economic Review, 2020, DOI: 10.1016/j.euroecorev.2020.103405.
doi: 10.1016/j.euroecorev.2020.103405 |
[10] |
Mörsdorf G. A simple fix for carbon leakage? Assessing the environmental effectiveness of the EU carbon border adjustment[J]. Energy Policy, 2022, DOI: 10.1016/j.enpol.2021.112596.
doi: 10.1016/j.enpol.2021.112596 |
[11] |
Larch M, Wanner J. Carbon tariffs: An analysis of the trade, welfare, and emission effects[J]. Journal of International Economics, 2017, 109:195-213.
doi: 10.1016/j.jinteco.2017.09.003 |
[12] |
Zhong J R, Pei J S. Beggar thy neighbor? On the competitiveness and welfare impacts of the EU’s proposed carbon border adjustment mechanism[J]. Energy Policy, 2022, DOI: 10.1016/j.enpol.2022.112802.
doi: 10.1016/j.enpol.2022.112802 |
[13] |
Pató Z, Mezősi A, Szabó L. Is border carbon adjustment the right tool for the power sector?[J]. Climate Policy, 2022, DOI: 10.1080/14693062.2022.2043819.
doi: 10.1080/14693062.2022.2043819 |
[14] |
Cheng H T. Border carbon adjustments with endogenous assembly locations[J]. Economic Modelling, 2021, DOI: 10.1016/j.econmod.2021.105666.
doi: 10.1016/j.econmod.2021.105666 |
[15] |
Zhang Y J, Hao J F. Carbon emission quota allocation among China’s industrial sectors based on the equity and efficiency principles[J]. Annals of Operations Research, 2017, 255(1):117-140.
doi: 10.1007/s10479-016-2232-2 |
[16] |
Fang K, Zhang Q F, Long Y, et al. How can China achieve its Intended nationally determined contributions by 2030? A multi-criteria allocation of China’s carbon emission allowance[J]. Applied Energy, 2019, 241:380-389.
doi: 10.1016/j.apenergy.2019.03.055 |
[17] |
Cai W G, Ye P Y. A more scientific allocation scheme of carbon dioxide emissions allowances: The case from China[J]. Journal of Cleaner Production, 2019, DOI: 10.1016/j.jclepro.2019.01.043.
doi: 10.1016/j.jclepro.2019.01.043 |
[18] |
Ma C Q, Ren Y S, Zhang Y J, et al. The allocation of carbon emission quotas to five major power generation corporations in China[J]. Journal of Cleaner Production, 2018, DOI: 10.1016/j.jclepro.2018.04.006.
doi: 10.1016/j.jclepro.2018.04.006 |
[19] |
Chen B, Zhang H Y, Li W, et al. Research on provincial carbon quota allocation under the background of carbon neutralization[J]. Energy Reports, 2022, 8:903-915.
doi: 10.1016/j.egyr.2022.02.023 |
[20] |
Ojo O M, Adenuga A H, Lauwers L, et al. Unraveling the impact of variable external input use on the cost efficiency of dairy farms in Europe[J]. Environmental and Sustainability Indicators, 2020, DOI: 10.1016/j.indic.2020.100076.
doi: 10.1016/j.indic.2020.100076 |
[21] |
Böhringer C, Balistreri E J, Rutherford T F. The role of border carbon adjustment in unilateral climate policy: Overview of an energy modeling forum study (EMF 29)[J]. Energy Economics, 2012, 34:S97-S110.
doi: 10.1016/j.eneco.2012.10.003 |
[22] |
Banerjee S. Conjugation of border and domestic carbon adjustment and implications under production and consumption-based accounting of India’s national emission inventory: A recursive dynamic CGE analysis[J]. Structural Change and Economic Dynamics, 2021, 57:68-86.
doi: 10.1016/j.strueco.2021.01.007 |
[23] |
Evans S, Mehling M A, Ritz R A, et al. Border carbon adjustments and industrial competitiveness in a European Green Deal[J]. Climate Policy, 2021, 21(3):307-317.
doi: 10.1080/14693062.2020.1856637 |
[24] | Acar S, Asici A A, Yeldan A E. Potential Effects of the EU’s Carbon Border Adjustment Mechanism on the Turkish Economy[R]. Working Papers 1500, 2021. |
[25] | Burke J, Sato M, Taylor C, et al. What does an EU Carbon Border Adjustment Mechanism mean for the UK?[R]. London: Grantham Research Institute on Climate Change and the Environment, Centre for Climate Change Economics and Policy, 2021. |
[26] |
Lin B Q, Li A J. Impacts of carbon motivated border tax adjustments on competitiveness across regions in China[J]. Energy, 2011, 36(8):5111-5118.
doi: 10.1016/j.energy.2011.06.008 |
[27] |
Li A J, Zhang A Z. Will carbon motivated border tax adjustments function as a threat?[J]. Energy Policy, 2012, 47:81-90.
doi: 10.1016/j.enpol.2012.04.023 |
[28] | 王谋, 吉治璇, 康文梅, 等. 欧盟“碳边境调节机制”要点、影响及应对[J]. 中国人口·资源与环境, 2021, 31(12):45-52. |
[ Wang M, Ji Z X, Kang W M, et al. Key points and impact of EU’s carbon border adjustment mechanism and China’s responses[J]. China Population, Resources and Environment, 2021, 31(12):45-52.] | |
[29] | 刘斌, 赵飞. 欧盟碳边境调节机制对中国出口的影响与对策建议[J]. 清华大学学报(哲学社会科学版), 2021, 36(6):185-194, 210. |
[ Liu B, Zhao F. The impact of EU carbon tariff policy on China’s export and suggestions for China[J]. Journal of Tsinghua University (Philosophy and Social Sciences), 2021, 36(6):185-194, 210.] | |
[30] |
Zhou H J, Ping W Y, Wang Y, et al. China’s initial allocation of interprovincial carbon emission rights considering historical carbon transfers: Program design and efficiency evaluation[J]. Ecological Indicators, 2021, DOI: 10.1016/j.ecolind.2020.106918.
doi: 10.1016/j.ecolind.2020.106918 |
[31] |
He W J, Zhang B. A comparative analysis of Chinese provincial carbon dioxide emissions allowances allocation schemes in 2030: An egalitarian perspective[J]. Science of the Total Environment, 2021, DOI: 10.1016/j.scitotenv.2020.142705.
doi: 10.1016/j.scitotenv.2020.142705 |
[32] |
Cucchiella F, D’Adamo I, Gastaldi M, et al. Efficiency and allocation of emission allowances and energy consumption over more sustainable European economies[J]. Journal of Cleaner Production, 2018, 182:805-817.
doi: 10.1016/j.jclepro.2018.02.079 |
[33] |
Wu J J, Guo Q H, Yuan J H, et al. An integrated approach for allocating carbon emission quotas in China’s emissions trading system[J]. Resources, Conservation and Recycling, 2019, 143:291-298.
doi: 10.1016/j.resconrec.2019.01.001 |
[34] |
Qin Q D, Liu Y, Huang J P. A cooperative game analysis for the allocation of carbon emissions reduction responsibility in China’s power industry[J]. Energy Economics, 2020, DOI: 10.1016/j.eneco.2020.104960.
doi: 10.1016/j.eneco.2020.104960 |
[35] |
Guo J, Du L M, Wei C. Equity-efficiency trade-off in China’s energy capping policy[J]. Energy Policy, 2019, 126:57-65.
doi: 10.1016/j.enpol.2018.11.017 |
[36] |
Chen F, Zhao T, Xia H M. Allocation of carbon emission quotas in Chinese provinces based on Super-SBM model and ZSG-DEA model[J]. Clean Technologies and Environmental Policy, 2021, 23:2285-2301.
doi: 10.1007/s10098-021-02137-5 |
[37] |
Cui X Y, Zhao T, Wang J. Allocation of carbon emission quotas in China’s provincial power sector based on entropy method and ZSG-DEA[J]. Journal of Cleaner Production, 2021, DOI: 10.1016/j.jclepro.2020.124683.
doi: 10.1016/j.jclepro.2020.124683 |
[38] |
王勇, 王丁玉, 陈彦汝. 不同配额分配方式对中国碳交易市场运行的影响: 基于流动性、波动性与有效性视角的考察[J]. 资源科学, 2021, 43(12):2503-2513.
doi: 10.18402/resci.2021.12.12 |
[ Wang Y, Wang D Y, Chen Y R. Impact of different quota allocation methods on the operation of China’s carbon trading market: From the perspective of liquidity, volatility and effectiveness[J]. Resources Science, 2021, 43(12):2503-2513.] | |
[39] |
Du J, Pan M, Chen Y, et al. An efficiency-based allocation of car-bon emissions allowance: A case study in China[J]. Journal of Cleaner Production, 2020, DOI: 10.1016/j.jclepro.2019.119346.
doi: 10.1016/j.jclepro.2019.119346 |
[40] | 朱卫未, 缪子阳, 金贵生. 基于Context-dependent DEA方法的碳排放减额分配策略[J]. 资源科学, 2020, 42(11):2170-2183. |
[ Zhu W W, Miao Z Y, Gan G S. Carbon emission reduction allocation strategy based on the context-dependent DEA method[J]. Resources Science, 2020, 42(11):2170-2183.] | |
[41] |
Lei W, Zhang E N. Regional allocation of carbon emissions in China based on zero sum gains data envelopment analysis model[J]. Environmental Engineering Research, 2016, 21(1):91-98.
doi: 10.4491/eer.2015.107 |
[42] | Pang R Z, Deng Z Q, Chiu Y H. Pareto improvement through a reallocation of carbon emission quotas[J]. Renewable and Sustainable Energy Reviews, 2015, 50:419-430. |
[43] |
Nolan J F, Ritchie P C, Rowcroft J E. Identifying and measuring public policy goals: ISTEA and the US bus transit industry[J]. Journal of Economic Behavior and Organization, 2002, 48(3):291-304.
doi: 10.1016/S0167-2681(01)00234-7 |
[44] |
Oum T H, Pathomsiri S, Yoshida Y. Limitations of DEA-based approach and alternative methods in the measurement and comparison of social efficiency across firms in different transport modes: An empirical study in Japan[J]. Transportation Research Part E: Logistics and Transportation Review, 2013, 57:16-26.
doi: 10.1016/j.tre.2013.01.003 |
[45] |
Lins M P E, Gomes E G, Mello J C C S, et al. Olympic ranking based on a zero sum gains DEA model[J]. European Journal of Operational Research, 2003, 148(2):312-322.
doi: 10.1016/S0377-2217(02)00687-2 |
[46] |
Dehnokhalaji A, Ghiyasi M, Korhonen P. Resource allocation based on cost efficiency[J]. Journal of the Operational Research Society, 2017, 68:1279-1289.
doi: 10.1057/s41274-016-0020-7 |
[47] |
Heinrichs H U, Markewitz P. Long-term impacts of a coal phase-out in Germany as part of a greenhouse gas mitigation strategy[J]. Applied Energy, 2017, 192:234-246.
doi: 10.1016/j.apenergy.2017.01.065 |
[48] |
Hobbie H, Schmidt M, Möst D. Windfall profits in the power sector during phase III of the EU ETS: Interplay and effects of renewables and carbon prices[J]. Journal of Cleaner Production, 2019, DOI: 10.1016/j.jclepro.2019.118066.
doi: 10.1016/j.jclepro.2019.118066 |
[49] |
Carlén B, Dahlqvist A, Mandell S, et al. EU ETS emissions under the cancellation mechanism: Effects of national measures[J]. Energy Policy, 2019, 129:816-825.
doi: 10.1016/j.enpol.2019.02.060 |
[50] |
Sakai M, Barrett J. Border carbon adjustments: Addressing emissions embodied in trade[J]. Energy Policy, 2016, 92:102-110.
doi: 10.1016/j.enpol.2016.01.038 |
[51] |
Atkinson G, Hamilton K, Ruta G. Trade in virtual carbon: Empirical results and implications for policy[J]. Global Environmental Change, 2011, 21(2):563-574.
doi: 10.1016/j.gloenvcha.2010.11.009 |
[52] | Chang C L, Mai T K, Mcaleer M J. Establishing national carbon emission prices for China[J]. Renewable and Sustainable Energy Reviews, 2019, 106:1-16. |
[53] | 魏立佳, 彭妍, 刘潇. 碳市场的稳定机制: 一项实验经济学研究[J]. 中国工业经济, 2018, (4):174-192. |
[ Wei L J, Peng Y, Liu X. The stability mechanism of the carbon market: A study of experimental economics[J]. China Industrial Economics, 2018, (4):174-192.] | |
[54] | 齐绍洲, 杨光星, 王班班. 中国碳价格对覆盖行业贸易竞争力的影响研究[J]. 中国人口·资源与环境, 2020, 30(4):107-115. |
[ Qi S Z, Yang G X, Wang B B. Analysis on the impact of China’s carbon prices on the trade competitiveness of covered industries[J]. China Population, Resources and Environment, 2020, 30(4):107-115.] |
[1] | 李虹, 王帅. 需求侧视角下中国隐含能源消费量及强度的影响因素[J]. 资源科学, 2021, 43(9): 1728-1742. |
[2] | 吴伟光, 祝雅璐, 顾光同. 中国试点碳市场有效性的决定因素[J]. 资源科学, 2021, 43(10): 2119-2129. |
[3] | 严良,熊伟伟,王小林,王腾. 供需错配下能源替代路径优化[J]. 资源科学, 2019, 41(9): 1655-1664. |
[4] | 宋亚植,刘天森,梁大鹏,王世进. 碳市场合理初始价格区间测算[J]. 资源科学, 2019, 41(8): 1438-1449. |
[5] | 孟望生. 经济增长方式转变与能源消费强度差异的收敛性——基于中国2001—2016年省级面板数据[J]. 资源科学, 2019, 41(7): 1295-1305. |
[6] | 赵永斌, 丛建辉, 杨军, 张艺璇. 中国碳市场配额分配方法探索[J]. 资源科学, 2019, 41(5): 872-883. |
[7] | 陈志峰. 能源消费税与用能权交易制度的协调使用[J]. 资源科学, 2019, 41(12): 2205-2215. |
[8] | 周敏, 谢莹莹, 孙叶飞, 高文. 中国城镇化发展对能源消费的影响路径研究——基于直接效应与间接效应视角[J]. 资源科学, 2018, 40(9): 1693-1705. |
[9] | 刘海英, 尚晶, 王殿武. 中国省际节能与环保一致性及影响因素研究[J]. 资源科学, 2018, 40(12): 2438-2450. |
[10] | 刘成, 杨雪, 周晓时, 冯中朝, 张智, 丛日环. 中国化肥投入对油菜成本效率的影响[J]. 资源科学, 2018, 40(12): 2487-2495. |
[11] | 严翔, 成长春, 贾亦真. 中国城镇化进程中产业、空间、人口对能源消费的影响分解[J]. 资源科学, 2018, 40(1): 216-225. |
[12] | 周彦楠, 何则, 马丽, 杨宇, 张天媛, 陈力原. 中国能源消费结构地域分布的时空分异及影响因素[J]. 资源科学, 2017, 39(12): 2247-2257. |
[13] | 芈凌云, 顾曼, 杨洁, 俞学燕, 刘玥. 城市居民能源消费行为低碳化的心理动因——以江苏省徐州市为例[J]. 资源科学, 2016, 38(4): 609-621. |
[14] | 翟紫含, 付军. 西部少数民族地区农村生活能源消费特征——基于四川凉山州住户调查数据的分析[J]. 资源科学, 2016, 38(4): 622-630. |
[15] | 刘卫东, 仲伟周, 石清. 2020年中国能源消费总量预测——基于定基能源消费弹性系数法[J]. 资源科学, 2016, 38(4): 658-664. |
|