资源科学 ›› 2022, Vol. 44 ›› Issue (2): 261-273.doi: 10.18402/resci.2022.02.04
吕锦心1,2(), 刘昌明1, 梁康1(
), 田巍1,2, 白鹏1, 张仪辉1,2
收稿日期:
2021-07-20
修回日期:
2021-10-09
出版日期:
2022-02-25
发布日期:
2022-04-13
通讯作者:
梁康,男,重庆巴南人,博士,副研究员,主要从事流域水文过程演变机理与模拟研究。E-mail: liangk@igsnrr.ac.cn作者简介:
吕锦心,女,浙江绍兴人,硕士生,研究方向为水文水资源。E-mail: lvjx.19s@igsnrr.ac.cn
基金资助:
LV Jinxin1,2(), LIU Changming1, LIANG Kang1(
), TIAN Wei1,2, BAI Peng1, ZHANG Yihui1,2
Received:
2021-07-20
Revised:
2021-10-09
Online:
2022-02-25
Published:
2022-04-13
摘要:
探究和预估气候变化下黄河流域极端降水的变化特征,是科学认知黄河水情以及支撑流域防洪减灾工作的基础。本文基于全国水资源二级分区,综合采用“中国区域地面气象要素驱动数据集”和跨部门影响模型相互比较项目(ISIMIP)的降水数据,利用Mann-Kendall趋势检验、Sen’s斜率估计等方法分析了黄河流域及其8个二级水资源分区的6个极端降水指标在历史期(1979—2018年)和未来期(2021—2100年)的时空变化特性。研究表明:①空间上,历史期与未来不同情景下黄河流域极端降水指标值在整体上均呈现由西北至东南逐渐增大的变化特征,在河口镇至龙门(Ⅳ)、龙门至三门峡(Ⅴ)等分区内部还出现了极端降水高值中心,这些区域高值中心与历史洪水爆发区具有较好的空间对应关系;②时间上(历史期),多数水资源分区的极端降水指标主要呈上升趋势,且小时尺度极端降水增强是所有分区的统一特征;作为黄河干流洪水主要来源区的兰州以上(Ⅰ和Ⅱ)、河口镇至龙门(Ⅳ)、花园口以下(Ⅶ)分区的所有极端降水指标呈上升趋势;③时间上(未来期),在不同辐射强迫情景下,未来各水资源分区的极端降水指标值都呈增加趋势,且增加幅度和空间覆盖范围会随着辐射强迫的增大而增大,这将加剧黄河分区防洪形势,其中河口镇以上3个分区(Ⅰ、Ⅱ、Ⅲ)和龙门至三门峡(Ⅴ)分区的极端降水增强幅度最为明显,是未来防洪重点区。本文结果可为黄河流域未来极端降水灾害风险评估、区域防洪风险分析及应对、雨洪水资源管理等提供参考。
吕锦心, 刘昌明, 梁康, 田巍, 白鹏, 张仪辉. 基于水资源分区的黄河流域极端降水时空变化特征[J]. 资源科学, 2022, 44(2): 261-273.
LV Jinxin, LIU Changming, LIANG Kang, TIAN Wei, BAI Peng, ZHANG Yihui. Spatiotemporal variations of extreme precipitation in the Yellow River Basin based on water resources regionalization[J]. Resources Science, 2022, 44(2): 261-273.
表2
1979—2018年黄河流域及水资源分区极端降水指标多年平均值 (mm)
极端指标 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ | Ⅵ | Ⅶ | Ⅷ | 黄河流域 |
---|---|---|---|---|---|---|---|---|---|
Rx3hour | 4.1 | 5.3 | 5.3 | 7.5 | 5.4 | 11.9 | 16.6 | 10.0 | 3.0 |
Rx6hour | 6.8 | 8.6 | 8.6 | 12.6 | 10.0 | 19.5 | 27.5 | 15.6 | 5.3 |
Rx12hour | 10.1 | 13.4 | 13.1 | 19.8 | 16.4 | 28.5 | 40.0 | 21.2 | 9.2 |
Rx1day | 12.5 | 15.7 | 15.9 | 23.6 | 21.9 | 35.8 | 46.0 | 22.8 | 12.8 |
Rx5day | 39.2 | 37.2 | 32.1 | 53.6 | 54.3 | 73.9 | 93.1 | 41.8 | 35.8 |
R95pTOT | 68.7 | 69.1 | 44.2 | 85.2 | 94.9 | 131.6 | 165.7 | 58.8 | 64.5 |
[1] | IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Cambridge: Cambridge University Press, 2021. |
[2] |
Madakumbura G D, Thackeray C W, Norris J, et al. Anthropogenic influence on extreme precipitation over global land areas seen in multiple observational datasets[J]. Nature Communications, 2021, DOI: 10.1038/s41467-021-24262-x.
doi: 10.1038/s41467-021-24262-x |
[3] | 翟盘茂, 周佰铨, 陈阳, 等. 气候变化科学方面的几个最新认知[J]. 气候变化研究进展. 2021, 17(6):629-635. |
[ Zhai P M, Zhou B Q, Chen Y, et al. Several new understandings in the climate change science[J]. Climate Change Research, 2021, 17(6):629-635.] | |
[4] |
Formayer H, Fritz A. Temperature dependency of hourly precipitation intensities-surface versus cloud layer temperature[J]. International Journal of Climatology, 2017, DOI: 10.1002/joc.4678.
doi: 10.1002/joc.4678 |
[5] | 周天军, 任俐文, 张文霞. 2020年梅雨期极端降水的归因探讨和未来风险预估研究[J]. 中国科学: 地球科学, 2021, 51(10):1637-1649. |
[ Zhou T J, Ren L W, Zhang W X. Discussion on the attribution of extreme precipitation during the Meiyu period in 2020 and research on future risk prediction[J]. Scientia Sinica (Terrae), 2021, 51(10):1637-1649.] | |
[6] |
陈晓龙, 王平. 1979-2017年北极陆地气候变化趋势[J]. 资源科学, 2021, 43(6):1260-1274.
doi: 10.18402/resci.2021.06.16 |
[ Chen X L, Wang P. Climate changes over the Arctic land during 1979-2017[J]. Resources Science, 2021, 43(6):1260-1274.] | |
[7] | 宋晓猛, 张建云, 孔凡哲, 等. 北京地区降水极值时空演变特征[J]. 水科学进展, 2017, 28(2):161-173. |
[ Song X M, Zhang J Y, Kong F Z, et al. Spatiao-temporal variation characteristics of precipitation extremes in Beijing[J]. Advances in Water Science, 2017, 28(2):161-173.] | |
[8] |
Yin J B, Gentine P, Sha Z, et al. Large increase in global storm runoff extremes driven by climate and anthropogenic changes[J]. Nature Counications, 2018, DOI: 10.1038/s41467-018-06765-2.
doi: 10.1038/s41467-018-06765-2 |
[9] | 刘昌明, 田巍, 刘小莽, 等. 黄河近百年径流量变化分析与认识[J]. 人民黄河, 2019, 41(10):11-15. |
[ Liu C M, Tian W, Liu X M, et al. Analysis and understanding on runoff variation of the Yellow River in recent 100 years[J]. Yellow River, 2019, 41(10):11-15.] | |
[10] |
Bai P, Liu X M, Liang K, et al. Investigation of changes in the annual maximum flood in the Yellow River Basin, China[J]. Quaternary International, 2016, 392:168-177.
doi: 10.1016/j.quaint.2015.04.053 |
[11] | 王浩, 何凡, 何国华, 等. 黄河流域水治理准则、路径与方略[J]. 水利发展研究, 2020, 20(10):5-9. |
[ Wang H, He F, He G H, et al. Water governance guidelines, paths and strategies of the Yellow River Basin[J]. Water Resources Development Research, 2020, 20(10):5-9.] | |
[12] | 牛玉国, 张金鹏. 对黄河流域生态保护和高质量发展国家战略的几点思考[J]. 人民黄河, 2020, 42(11):1-4. |
[ Niu Y G, Zhang J P. Thoughts on the national strategy of ecological protection and high-quality development in the Yellow River Basin[J]. Yellow River, 2020, 42(11):1-4.] | |
[13] | 宋伟华, 刘红珍, 崔鹏, 等. 黄河上游近年中小洪水特点及水库调度分析[J]. 人民黄河, 2020, 42(5):34-39. |
[ Song W H, Liu H Z, Cui P, et al. Analysis of the characteristics of medium and small floods and reservoir operation in the upper reaches of the Yellow River in recent years[J]. Yellow River, 2020, 42(5):34-39.] | |
[14] | 徐晓英, 贺顺德. 基于中常洪水防洪调度的黄河上游洪水特性研究[J]. 甘肃水利水电技术, 2019, 55(4):4-7. |
[ Xu X Y, He S D. Research on the flood characteristics of the upper reaches of the Yellow River based on the flood control and dispatch of medium floods[J]. Gansu Water Resources and Hydropower Technology, 2019, 55(4):4-7.] | |
[15] | 雷鸣, 高治定, 宋伟华. 黄河中游河龙区间区域性暴雨特性分析[J]. 人民黄河, 2012, 34(8):17-20. |
[ Lei M, Gao Z D, Song W H. Regional rainstorm characteristics analysis on the He-Long Reach of the middle reaches of the Yellow River[J]. Yellow River, 2012, 34(8):17-20.] | |
[16] | 张楷, 王君善, 纪登前. 陕北大理河“2017·7”暴雨洪水成因分析[J]. 陕西水利, 2021, (4):51-53. |
[ Zhang K, Wang J S, Ji D Q. Analysis on the cause of the “2017·7” storm flood in the Dali River in northern Shaanxi[J]. Shaanxi Water Resources, 2021, 4:51-53.] | |
[17] | 王婧, 那巍. 黄河河龙区间洪水泥沙关系分析[J]. 灌溉排水学报, 2019, 38(S1):107-110. |
[ Wang J, Na W. Relationship between the flood cement and cement sand in the the Yellow River Helong Reach based on the typical sediment content[J]. Journal of Irrigation and Drainage, 2019, 38(S1):107-110.] | |
[18] | 张金良. 黄河流域生态保护和高质量发展水战略思考[J]. 人民黄河, 2020, 42(4):1-6. |
[ Zhang J L. Water strategy for ecological protection and high quality development in the Yellow River Basin[J]. Yellow River, 2020, 42(4):1-6.] | |
[19] |
Sun Q H, Zhang X B, Zwiers F, et al. A global, continental, and regional analysis of changes in extreme precipitation[J]. Journal of Climate, 2021, 34(1):243-258.
doi: 10.1175/JCLI-D-19-0892.1 |
[20] |
Liang K, Liu S, Bai P, et al. The Yellow River Basin becomes wetter or drier? The case as indicated by mean precipitation and extremes during 1961-2012[J]. Theoretical and Applied Climatology, 2015, 119(3):701-722.
doi: 10.1007/s00704-014-1138-7 |
[21] |
王怀军, 潘莹萍, 陈忠升. 1960-2014年淮河流域极端气温和降水时空变化特征[J]. 地理科学, 2017, 37(12):1900-1908.
doi: 10.13249/j.cnki.sgs.2017.12.014 |
[ Wang H J, Pan Y P, Chen Z S. Spatial and temporal patterns of temperature and precipitation extremes in the Huaihe River Basin, China in 1960-2014[J]. Scientia Geographica Sinica, 2017, 37(12):1900-1908.] | |
[22] |
Donat M G, Lowry A L, Alexander L V, et al. More extreme precipitation in the world’s dry and wet regions[J]. Nature Climate Change, 2017, 6(5):508-513.
doi: 10.1038/nclimate2941 |
[23] |
Sun Q H, Zhang X B, Zwiers F, et al. A global, continental, and regional analysis of changes in extreme precipitation[J]. Journal of Climate, 2021, 34(1):243-258.
doi: 10.1175/JCLI-D-19-0892.1 |
[24] | 慎璐璐, 杨艳芬, 吴晶, 等. 黄河流域极端气候事件时空变化规律[J]. 水土保持研究, 2022, 29(2):231-242. |
[ Shen L L, Yang Y F, Wu J, et al. Spatial and temporal variation characteristics of extreme climate events in the Yellow River Basin[J]. Research of Soil and Water Conservation, 2022, 29(2):231-242.] | |
[25] |
李双双, 汪成博, 延军平, 等. 面向事件过程的秦岭南北极端降水时空变化特征[J]. 地理学报, 2020, 75(5):989-1007.
doi: 10.11821/dlxb202005008 |
[ Li S S, Wang C B, Yan J P, et al. Variability of the event-based extreme precipitation in the south and north Qinling Mounains[J]. Acta Geographica Sinica, 2020, 75(5):989-1007.] | |
[26] | 高治定, 李文家, 李海荣. 黄河流域暴雨洪水与环境变化影响研究[M]. 郑州: 黄河水利出版社, 2002. |
[ Gao Z D, Li W J, Li H R. Research on the Impact of Storm Floods and Environmental Changes in the Yellow River Basin[M]. Zhengzhou: Yellow River Water Conservancy Press, 2002.] | |
[27] |
He J, Yang K, Tang W J, et al. The first high-resolution meteorological forcing dataset for land process studies over China[J]. Scientific Data, 2020, 7(1):1-11.
doi: 10.1038/s41597-019-0340-y |
[28] |
Frieler K, Lange S, Piontek F, et al. Assessing the impacts of 1.5 ℃ global warming-simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b)[J]. Geoscientific Model Development, 2017, 10(12):4321-4345.
doi: 10.5194/gmd-10-4321-2017 |
[29] |
O’Neill B C, Tebaldi C, Vuuren D P, et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6[J]. Geoscientific Model Development, 2016, 9(9):3461-3482.
doi: 10.5194/gmd-9-3461-2016 |
[30] | Peterson T, Folland C, Gruza G, et al. Report on the activities of the Working Group on Climate Change Detection and Related Rapporteurs 1998-2001[R]. Geneva: World Meteorological Organization, 2001. |
[31] |
Sen P K. Estimates of the regression coefficient based on Kendall’s tau[J]. Journal of the American Statistical Association, 1968, 63(324):1379-1389.
doi: 10.1080/01621459.1968.10480934 |
[32] |
陈婷, 夏军, 邹磊, 等. 白洋淀流域NDVI时空演变及其对气候变化的响应[J]. 资源科学, 2021, 43(6):1248-1259.
doi: 10.18402/resci.2021.06.15 |
[ Chen T, Xia J, Zou L, et al. Spatiotemporal variations of NDVI of different vegetation types in the Baiyangdian Basin under the background of climate change[J]. Resources Science, 2021, 43(6):1248-1259.] | |
[33] | 由宇军, 富康平, 宋淑红. 合成流量法在窟野河神木水文站洪水预报中的应用[J]. 陕西水利, 2019, (4):93-96. |
[ You Y J, Fu K P, Song S H. Application of synthetic flow method in flood forecasting at Shenmu Hydrological Station of Kuye River[J]. Shaanxi Water Resources, 2019, (4):93-96.] | |
[34] | 井宇, 陈闯, 胡启元. 2017年7月下旬无定河流域一次罕见洪灾研究[J]. 陕西气象, 2019, (2):8-13. |
[ Jing Y, Chen C, Hu Q Y. Case study of a rare flood disaster in late July 2017 in Wuding River Basin[J]. Journal of Shaanxi Meteorology, 2019, (2):8-13.] | |
[35] | 张凤华, 崔秋利, 陈利军. 渭河下游南北岸防洪保护区洪水风险分析[J]. 人民黄河, 2019, 41(9):65-69. |
[ Zhang F H, Cui Q L, Chen L J. Analysis of flood risk of the flood-protected area of lower Weihe River[J]. Yellow River, 2019, 41(9):65-69.] | |
[36] | 黄河水利委员会勘测规划设计研究院, 史辅成, 易元俊, 高治定. 黄河流域暴雨与洪水[M]. 郑州: 黄河水利出版社, 1997. |
[Yellow River Water Conservancy Commission Survey, Planning and Design Institute, Shi F C, Yi Y J, Gao Z D. Rainstorms and Floods in the Yellow River Basin[M]. Zhengzhou: Yellow River Water Conservancy Press, 1997.] |
[1] | 张华明, 元鹏飞, 朱治双. 黄河流域碳排放脱钩效应及减排路径[J]. 资源科学, 2022, 44(1): 59-69. |
[2] | 孔雪松, 陈俊励, 刘殿锋, 赵翔. 农村宅基地退出潜力空间分异与分层协同分区——以湖北宜城市为例[J]. 资源科学, 2021, 43(7): 1322-1334. |
[3] | 陈琛, 郭甲嘉, 沈大军. 黄河流域水量分配和再分配[J]. 资源科学, 2021, 43(4): 799-812. |
[4] | 张志强, 刘欢, 左其亭, 于锦涛, 李阳. 2000—2019年黄河流域植被覆盖度时空变化[J]. 资源科学, 2021, 43(4): 849-858. |
[5] | 刘贝贝, 左其亭, 刁艺璇. 绿色科技创新在黄河流域生态保护和高质量发展中的价值体现及实现路径[J]. 资源科学, 2021, 43(2): 423-432. |
[6] | 徐辉, 王亿文, 张宗艳, 高一公, 张大伟. 黄河流域水-能源-粮食耦合机理及协调发展时空演变[J]. 资源科学, 2021, 43(12): 2526-2537. |
[7] | 马军旗, 乐章. 黄河流域生态补偿的水环境治理效应——基于双重差分方法的检验[J]. 资源科学, 2021, 43(11): 2277-2288. |
[8] | 王良栋, 吴乐英, 陈玉龙, 马晓哲, 杜梦娜. 经济平稳增长下黄河流域相关省区碳达峰时间及峰值水平[J]. 资源科学, 2021, 43(11): 2331-2341. |
[9] | 黄晶, 薛东前, 代兰海. 农产品主产区村镇建设资源环境承载力空间分异及影响因素——以甘肃省临泽县为例[J]. 资源科学, 2020, 42(7): 1262-1274. |
[10] | 巨虹, 李同昇, 翟洲燕. 基于ETFP的黄河流域工业高质量发展水平时空分异研究[J]. 资源科学, 2020, 42(6): 1099-1109. |
[11] | 郭贝贝, 方叶林, 周寅康. 农户尺度的耕地撂荒影响因素及空间分异[J]. 资源科学, 2020, 42(4): 696-709. |
[12] | 杨永春, 穆焱杰, 张薇. 黄河流域高质量发展的基本条件与核心策略[J]. 资源科学, 2020, 42(3): 409-423. |
[13] | 许学工, 梁泽, 周鑫. 黄河三角洲陆海统筹可持续发展探讨[J]. 资源科学, 2020, 42(3): 424-432. |
[14] | 刘曙光, 许玉洁, 王嘉奕. 江河流域经济系统开放与可持续发展关系——国际经典案例及对黄河流域高质量发展的启示[J]. 资源科学, 2020, 42(3): 433-445. |
[15] | 陈琼, 张镱锂, 刘峰贵, 周强, 汪生珍, 成艺, 郭蓉, 支泽民, 许寰戈. 黄河流域河源区土地利用变化及其影响研究综述[J]. 资源科学, 2020, 42(3): 446-459. |
|