资源科学 ›› 2021, Vol. 43 ›› Issue (12): 2526-2537.doi: 10.18402/resci.2021.12.14
徐辉1(), 王亿文1, 张宗艳2, 高一公1, 张大伟2(
)
收稿日期:
2020-12-21
修回日期:
2021-03-23
出版日期:
2021-12-25
发布日期:
2022-02-16
通讯作者:
张大伟,男,甘肃景泰人,博士,副教授,主要研究方向为生态学及人与自然耦合。E-mail: zhdawei@lzu.edu.cn作者简介:
徐辉,女,甘肃兰州人,博士,教授,主要研究方向为生态经济与资源环境管理。E-mail: xhhui@lzu.edu.cn
基金资助:
XU Hui1(), WANG Yiwen1, ZHANG Zongyan2, GAO Yigong1, ZHANG Dawei2(
)
Received:
2020-12-21
Revised:
2021-03-23
Online:
2021-12-25
Published:
2022-02-16
摘要:
黄河流域面临的水、能源和粮食问题非常突出,研究黄河流域水-能源-粮食耦合协调发展有助于推动黄河流域的生态保护和高质量发展。本文首先分析黄河流域水-能源-粮食耦合协调发展机理,构建相应的耦合协调发展评价指标体系;在此基础上,运用耦合协调度模型测算了2008—2018年黄河流域水-能源-粮食耦合协调发展状况,并分析其时间和空间演变特征;最后,利用灰色预测GM(1, 1)模型对其耦合协调发展状况进行模拟。结果表明:①2008—2018年黄河流域水-能源-粮食基本处于稳定的高水平耦合状态,2010年由初级协调转变为中级协调,2018年由中级协调转变为良好协调。②省区间的耦合协调发展水平差异较大,宁夏仅为勉强协调,河南、陕西和甘肃为初级协调,山西、内蒙古、山东和青海为中级协调。③2019—2023年除陕西外,其余各省区水-能源-粮食耦合协调度预计将呈缓慢上升的趋势。本文根据各省区的水-能源-粮食耦合协调特征提出了相应的政策建议。
徐辉, 王亿文, 张宗艳, 高一公, 张大伟. 黄河流域水-能源-粮食耦合机理及协调发展时空演变[J]. 资源科学, 2021, 43(12): 2526-2537.
XU Hui, WANG Yiwen, ZHANG Zongyan, GAO Yigong, ZHANG Dawei. Coupling mechanism of water-energy-food and spatiotemporal evolution of coordinated development in the Yellow River Basin[J]. Resources Science, 2021, 43(12): 2526-2537.
表1
黄河流域WEF耦合协调发展评价指标体系
子系统 | 维度 | 评价指标 | 单位 | 属性 |
---|---|---|---|---|
水资源 | 投入 | 人均水资源量 | m3/人 | 正 |
人均降水总量 | m3/人 | 正 | ||
产出 | 人均用水量 | m3/人 | 负 | |
单位GDP用水量 | m3/万元 | 负 | ||
生活用水占比 | % | 正 | ||
工业生产用水占比 | % | 负 | ||
人均废水排放总量 | t/人 | 负 | ||
能源 | 投入 | 人均能源产量 | t标准煤/人 | 正 |
能源工业投资 | 亿元 | 正 | ||
原煤占能源产量比重 | % | 正 | ||
人均天然气供气总量 | m3/人 | 正 | ||
产出 | 人均能源消费量 | t标准煤/人 | 负 | |
单位GDP能耗 | t标准煤/万元 | 负 | ||
煤炭消费占比 | % | 负 | ||
粮食 | 投入 | 有效灌溉面积占比 | % | 正 |
粮食播种面积占比 | % | 正 | ||
机械动力 | kW/hm2 | 正 | ||
单位面积化肥折纯使用量 | t/hm2 | 负 | ||
产出 | 人均粮食产量 | kg/人 | 正 | |
粮食单产 | t/hm2 | 正 | ||
居民粮食消费价格指数 | - | 负 | ||
人口自然增长率 | ‰ | 负 | ||
农村居民人均可支配收入 | 元 | 正 |
表4
2008—2018年黄河流域WEF系统综合评价指数、耦合度及耦合协调度均值
年份 | TW | TE | TF | T | C | D | 耦合阶段 | 耦合协调类型 |
---|---|---|---|---|---|---|---|---|
2008 | 0.496 | 0.426 | 0.404 | 0.442 | 0.974 | 0.656 | 高水平耦合 | 初级协调 |
2009 | 0.582 | 0.481 | 0.435 | 0.500 | 0.975 | 0.696 | 高水平耦合 | 初级协调 |
2010 | 0.553 | 0.533 | 0.424 | 0.503 | 0.981 | 0.702 | 高水平耦合 | 中级协调 |
2011 | 0.548 | 0.522 | 0.485 | 0.518 | 0.990 | 0.714 | 高水平耦合 | 中级协调 |
2012 | 0.419 | 0.557 | 0.541 | 0.506 | 0.979 | 0.702 | 高水平耦合 | 中级协调 |
2013 | 0.431 | 0.572 | 0.490 | 0.498 | 0.986 | 0.700 | 高水平耦合 | 中级协调 |
2014 | 0.473 | 0.577 | 0.538 | 0.530 | 0.989 | 0.723 | 高水平耦合 | 中级协调 |
2015 | 0.407 | 0.587 | 0.600 | 0.531 | 0.975 | 0.719 | 高水平耦合 | 中级协调 |
2016 | 0.515 | 0.578 | 0.546 | 0.546 | 0.994 | 0.736 | 高水平耦合 | 中级协调 |
2017 | 0.614 | 0.568 | 0.657 | 0.613 | 0.993 | 0.779 | 高水平耦合 | 中级协调 |
2018 | 0.656 | 0.581 | 0.788 | 0.675 | 0.980 | 0.812 | 高水平耦合 | 良好协调 |
表6
2019—2023年黄河流域WEF耦合协调发展模拟
模拟年份 | 山西 | 内蒙古 | 山东 | 河南 | 陕西 | 甘肃 | 青海 | 宁夏 |
---|---|---|---|---|---|---|---|---|
2019 | 0.779 | 0.722 | 0.849 | 0.850 | 0.682 | 0.816 | 0.773 | 0.865 |
2020 | 0.786 | 0.724 | 0.874 | 0.880 | 0.675 | 0.835 | 0.775 | 0.893 |
2021 | 0.793 | 0.725 | 0.900 | 0.911 | 0.668 | 0.854 | 0.777 | 0.922 |
2022 | 0.801 | 0.727 | 0.926 | 0.944 | 0.661 | 0.874 | 0.778 | 0.951 |
2023 | 0.808 | 0.728 | 0.954 | 0.977 | 0.654 | 0.894 | 0.800 | 0.982 |
[1] | International Energy Agency. World Energy Outlook 2019[R]. Paris: OECD/IEA, 2019. |
[2] | Food and Agriculture Organization of the United Nations. The Water-Energy-Food Nexus: A New Approach in Support of Food Security and Sustainable Agriculture[R]. Rome: FAO, 2014. |
[3] | Food and Agriculture Organization of the United Nations, Earthscan. The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW): Managing Systems at Risk[R]. Rome and London: FAO and Earthscan, 2011. |
[4] | 习近平. 在黄河流域生态保护和高质量发展座谈会上的讲话[J]. 求是, 2019, (20):1-5. |
[ Xi J P. Speech at the symposium on ecological protection and quality development in the Yellow River Basin[J]. Qiushi, 2019, (20):1-5.] | |
[5] | 关伟, 许淑婷, 郭岫垚. 黄河流域能源综合效率的时空演变与驱动因素[J]. 资源科学, 2020, 42(1):150-158. |
[ Guan W, Xu S T, Guo X Y. Spatiotemporal change and driving factors of comprehensive energy efficiency in the Yellow River Basin[J]. Resources Science, 2020, 42(1):150-158.] | |
[6] | 王浩, 胡鹏. 水循环视角下的黄河流域生态保护关键问题[J]. 水利学报, 2020, 51(9):1009-1014. |
[ Wang H, Hu P. Key issues of ecological conservation in the Yellow River Basin from a water cycle perspective[J]. Journal of Hydraulic Engineering, 2020, 51(9):1009-1014.] | |
[7] | 王毅鑫, 王慧敏, 刘钢, 等. 生态优先视域下资源诅咒空间分异分析: 以黄河流域为例[J]. 软科学, 2019, 33(1):50-55. |
[ Wang Y X, Wang H M, Liu G, et al. Spatial distribution analysis of resource curse based on ecological priority: A case study of the Yellow River Basin[J]. Soft Science, 2019, 33(1):50-55.] | |
[8] |
林志慧, 刘宪锋, 陈瑛, 等. 水-粮食-能源纽带关系研究进展与展望[J]. 地理学报, 2021, 76(7):1591-1604.
doi: 10.11821/dlxb202107002 |
[ Lin Z H, Liu X F, Chen Y, et al. Water-food-energy nexus: Progress, challenges and prospect[J]. Acta Geographica Sinica, 2021, 76(7):1591-1604.] | |
[9] | 李桂君, 李玉龙, 贾晓菁, 等. 北京市水-能源-粮食可持续发展系统动力学模型构建与仿真[J]. 管理评论, 2016, 28(10):11-26. |
[ Li G J, Li Y L, Jia X J, et al. Establishment and simulation study of system dynamic model on sustainable development of water-energy-food nexus in Beijing[J]. Management Review, 2016, 28(10):11-26.] | |
[10] |
Saidmamatov O, Rudenko I, Pfister S, et al. Water-energy-food nexus framework for promoting regional integration in central Asia[J]. Water, 2020, DOI: 10.3390/w12071896.
doi: 10.3390/w12071896 |
[11] |
Smajgl A, Ward J, Pluschke L. The water-food-energy nexus: Realising a new paradigm[J]. Journal of Hydrology, 2016, 533:533-540.
doi: 10.1016/j.jhydrol.2015.12.033 |
[12] |
Bazilian M, Rogner H, Howells M, et al. Considering the energy, water and food nexus: Towards an integrated modelling approach[J]. Energy Policy, 2011, 39(12):7896-7906.
doi: 10.1016/j.enpol.2011.09.039 |
[13] |
Wolfe M L, Ting K C, Scott N, et al. Engineering solutions for food-energy-water systems: It is more than engineering[J]. Journal of Environmental Studies and Sciences. 2016, 6:172-182.
doi: 10.1007/s13412-016-0363-z |
[14] |
Purwanto A, Sušnik J, Suryadi F X, et al. Quantitative simulation of the water-energy-food (WEF) security nexus in a local planning context in Indonesia[J]. Sustainable Production and Consumption 2021, 25:198-216.
doi: 10.1016/j.spc.2020.08.009 |
[15] | 王慧敏, 洪俊, 刘钢. “水-能源-粮食”纽带关系下区域绿色发展政策仿真研究[J]. 中国人口·资源与环境, 2019, 29(6):74-84. |
[ Wang H M, Hong J, Liu G. Simulation research on different policies of regional green development under the nexus of water-energy-food[J]. China Population, Resources and Environment, 2019, 29(6):74-84.] | |
[16] | 孙才志, 阎晓东. 中国水资源-能源-粮食耦合系统安全评价及空间关联分析[J]. 水资源保护, 2018, 34(5):1-8. |
[ Sun C Z, Yan X D. Security evaluation and spatial correlation pattern analysis of water resources-energy-food nexus coupling system in China[J]. Water Resources Protection, 2018, 34(5):1-8.] | |
[17] | 李成宇, 张士强. 中国省际水-能源-粮食耦合协调度及影响因素研究[J]. 中国人口·资源与环境, 2020, 30(1):120-128. |
[ Li C Y, Zhang S Q. Chinese provincial water-energy-food coupling coordination degree and influencing factors research[J]. China Population, Resources and Environment, 2020, 30(1):120-128.] | |
[18] | 王凯, 李景保, 李欢. 山西省水-能源-粮食系统耦合协调时空变化特征研究[J]. 水资源与水工程学报, 2020, 31(3):45-52. |
[ Wang K, Li J B, Li H. Spatial and temporal variation characteristics of the coupling and coordination of water-energy-food nexus in Shanxi Province[J]. Journal of Water Resources and Water Engineering, 2020, 31(3):45-52.] | |
[19] | 党锐, 张军, 周冬梅, 等. 2000-2016年甘肃省水资源-能源-粮食耦合协调特征研究[J]. 水资源与水工程学报, 2020, 31(1):115-123. |
[ Dang R, Zhang J, Zhou D M, et al. Characteristic of the coupling and coordination of water-energy-food of Gansu Province during 2000-2016[J]. Journal of Water Resources and Water Engineering, 2020, 31(1):115-123.] | |
[20] |
Lawford R, Bogardi J, Marx S, et al. Basin perspectives on the water-energy-food security nexus[J]. Current Opinion in Environmental Sustainability, 2013, 5(6):607-616.
doi: 10.1016/j.cosust.2013.11.005 |
[21] | 沈宏婷, 陆玉麒, 沈惊宏. 中国省域创新投入-创新产出-创新效益的时空耦合研究[J]. 经济地理, 2017, 37(6):17-22. |
[ Shen H T, Lu Y Q, Shen J H. Spatial-temporal coupling of provincial innovation input-innovation output-innovation performance in China[J]. Economic Geography, 2017, 37(6):17-22.] | |
[22] | 刘琳轲, 梁流涛, 高攀, 等. 黄河流域生态保护与高质量发展的耦合关系及交互响应[J]. 自然资源学报, 2021, 36(1):176-195. |
[ Liu L K, Liang L T, Gao P, et al. Coupling relationship and interactive response between ecological protection and high-quality development in the Yellow River Basin[J]. Journal of Natural Resources, 2021, 36(1):176-195.] | |
[23] | 李良, 毕军, 周元春, 等. 基于粮食-能源-水关联关系的风险管控研究进展[J]. 中国人口·资源与环境, 2018, 28(7):85-92. |
[ Li L, Bi J, Zhou Y C, et al. Research progress of regional environmental risk management: From the perspectives of food-energy-water nexus[J]. China Population, Resources and Environment, 2018, 28(7):85-92.] | |
[24] | 黄雅丽, 邓晓军. 基于Citespace的“水-能源-粮食”纽带关系研究进展[J]. 中国农业资源与区划, 2020, 41(9):172-181. |
[ Huang Y L, Deng X J. Research progress on the “water-energy-food” nexus based on CiteSpace[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2020, 41(9): 172-181]. | |
[25] |
Hayward J, Boswell G P. Model behaviour and the concept of loop impact: A practical method[J]. System Dynamics Review, 2014, 30(1):29-57.
doi: 10.1002/sdr.1511 |
[26] |
Schoenenberger L, Schmid A, Schwaninger M. Towards the algorithmic detection of archetypal structures in system dynamics[J]. System Dynamics Review, 2015, 31(1):66-85.
doi: 10.1002/sdr.v31.1-2 |
[27] |
Chang Y, Li G J, Yao Y, et al. Quantifying the water-energy-food nexus: Current status and trends[J]. Energies, 2016, 9(2):65-65.
doi: 10.3390/en9020065 |
[28] | 周露明, 谢兴华, 朱珍德. 水-能源-粮食纽带关系耦合模拟模型及案例研究[J]. 中国农村水利水电, 2020, (10):1-6. |
[ Zhou L M, Xie X H, Zhu Z D. Water-energy-food nexus coupling simulation model and case study[J]. China Rural Water and Hydropower, 2020, (10):1-6.] | |
[29] | 张洪芬, 曾静静, 曲建升, 等. 资源高强度流动区水、能源和粮食耦合协调发展研究: 以京津冀地区为例[J]. 中国农村水利水电, 2019, (5):17-21. |
[ Zhang H F, Zeng J J, Qu J S, et al. Research on the coupling coordinative degree among water-energy-food system in high-intensity flow areas: A case study of Beijing, Tianjin and Hebei Province[J]. China Rural Water and Hydropower, 2019, (5):17-21.] | |
[30] | 郑人瑞, 唐金荣, 金玺. 水-能源-粮食纽带关系: 地球科学的认知与解决方案[J]. 中国矿业, 2018, 27(10):36-41. |
[ Zheng R R, Tang J R, Jin X. Water-energy-food nexus: Cognition and solution of earth science[J]. China Mining Magazine, 2018, 27(10):36-41.] | |
[31] | 何慧爽, 原雷雷. 我国粮食主产区水-能源-粮食耦合协调发展分析与预测[J]. 生态经济, 2021, 37(6):102-108. |
[ He H S, Yuan L L. Analysis and prediction of water-energy-food coupling and coordinated development in the main grain-producing areas in China[J]. Ecological Economy, 2021, 37(6):102-108.] | |
[32] | 毕博, 陈丹, 邓鹏, 等. 区域水资源-能源-粮食系统耦合协调演化特征研究[J]. 中国农村水利水电, 2018, (2):72-77. |
[ Bi B, Chen D, Deng P, et al. The evolutionary characteristics analysis of coupling and coordination of regional water-energy-food[J]. China Rural Water and Hydropower, 2018, (2):72-77.] | |
[33] | 孙才志, 周舟, 赵良仕. 基于SD模型的中国西南水-能源-粮食纽带系统仿真模拟[J]. 经济地理, 2021, 41(6):20-29. |
[ Sun C Z, Zhou Z, Zhao L S. System simulation of water-energy-food in southwest China based on SD model[J]. Economic Geography, 2021, 41(6):20-29.] | |
[34] | 尹庆民, 吴益. 中国水-能源-粮食耦合协调发展实证分析[J]. 资源与产业, 2019, 21(6):20-29. |
[ Yin Q M, Wu Y. Cases studies on water-energy-food coupling coordinated development in China[J]. Resources & Industries, 2019, 21(6):20-29.] | |
[35] | 汪潇, 汪发元. 能源工业投资、能源消费对经济增长的影响[J]. 统计与决策, 2019, 35(20):133-136. |
[ Wang X, Wang F Y. Impact of energy industry investment and energy consumption on economic growth[J]. Statistics & Decision, 2019, 35(20):133-136.] | |
[36] | 陈琳琳, 杨宇, 洪辉, 等. 中国能源工业空间分布、基地识别与演变特征[J]. 资源科学, 2016, 38(12):2256-2269. |
[ Chen L L, Yang Y, Hong H, et al. Geography distribution of China’s energy industry and evolution of energy industrial bases[J]. Resources Science, 2016, 38(12):2256-2269.] | |
[37] | 彭俊杰. 黄河流域“水-能源-粮食”相互作用关系及其优化路径[J]. 中州学刊, 2021, (8):48-54. |
[ Peng J J. “Water-energy-food” interaction relationship and its optimization path in the Yellow River Basin[J]. Academic Journal of Zhongzhou, 2021, (8):48-54.] | |
[38] | 赵建吉, 刘岩, 朱亚坤, 等. 黄河流域新型城镇化与生态环境耦合的时空格局及影响因素[J]. 资源科学, 2020, 42(1):159-171. |
[ Zhao J J, Liu Y, Zhu Y K, et al. Spatiotemporal differentiation and influencing factors of the coupling and coordinated development of new urbanization and ecological environment in the Yellow River Basin[J]. Resources Science, 2020, 42(1):159-171.] | |
[39] | 李敏纳, 蔡舒, 覃成林. 黄河流域经济空间分异态势分析[J]. 经济地理, 2011, 31(3):379-383. |
[ Li M N, Cai S, Qin C L. An analysis of situation of economic spatial dissimilarity in the Yellow River Valley[J]. Economic Geography, 2011, 31(3):379-383.] | |
[40] | 杨仁发, 杨超. 长江经济带高质量发展测度及时空演变[J]. 华中师范大学学报(自然科学版), 2019, 53(5):631-642. |
[ Yang R F, Yang C. The high-quality development measurement of the Yangtze River Economic Belt and the evolution of time and space[J]. Journal of Central China Normal University (Natural Sciences), 2019, 53(5):631-642.] | |
[41] | 杨德平, 刘喜华. 经济预测与决策技术及MATLAB实现[M]. 北京: 机械工业出版社, 2016. |
[ Yang D P, Liu X H. Economic Forecast and Decision Making Technology of and MATLAB Implementation[M]. Beijing: China Machine Press, 2016.] | |
[42] | 贾洪文, 高一公. 人口与经济协调发展的定量评判研究: 以甘肃省为例[J]. 兰州大学学报(社会科学版), 2019, 47(2):152-160. |
[ Jia H W, Gao Y G. Quantitative evaluation on coordinated development of population and economy: In the case of Gansu Province[J]. Journal of Lanzhou University (Social Sciences), 2019, 47(2):152-160.] | |
[43] | 马慧强, 廉倩文, 韩增林, 等. 基本公共服务-城镇化-区域经济耦合协调发展时空演化[J]. 经济地理, 2020, 40(5):19-28. |
[ Ma H Q, Lian Q W, Han Z L, et al. Spatio-temporal evolution of coupling and coordinated development of basic public services-urbanization-regional economy[J]. Economic Geography, 2020, 40(5):19-28.] | |
[44] |
方创琳, 崔学刚, 梁龙武. 城镇化与生态环境耦合圈理论及耦合器调控[J]. 地理学报, 2019, 74(12):2529-2546.
doi: 10.11821/dlxb201912008 |
[ Fang C L, Cui X G, Liang L W. Theoretical analysis of urbanization and eco-environment coupling coil and coupler control[J]. Acta Geographica Sinica, 2019, 74(12):2529-2546.] | |
[45] | 廖重斌. 环境与经济协调发展的定量评判及其分类体系: 以珠江三角洲城市群为例[J]. 热带地理, 1999, (2):3-5. |
[ Liao C B. Quantitative judgement and classification system for coordinated development of environment and economy: A case study of the city group in the Pearl River Delta[J]. Tropical Geography, 1999, (2):3-5.] | |
[46] | 刘耀彬, 李仁东, 宋学锋. 中国城市化与生态环境耦合度分析[J]. 自然资源学报, 2005, 20(1):105-112. |
[ Liu Y B, Li R D, Song X F. Analysis of coupling degrees of urbanization and ecological environment in China[J]. Journal of Natural Resources, 2005, 20(1):105-112.] | |
[47] | 黎孔清, 陈俭军, 马豆豆. 基于STIRPAT和GM(1, 1)模型的湖南省农地投入碳排放增长机理及趋势预测[J]. 长江流域资源与环境, 2018, 27(2):345-352. |
[ Li K Q, Chen J J, Ma D D. Growth mechanism and trend forecast of carbon emission from farmland inputs in Hunan Province based on STIRPAT and GM(1, 1) model[J]. Resources and Environment in the Yangtze Basin, 2018, 27(2):345-352.] | |
[48] | 杨国华, 颜艳, 杨慧中. GM(1, 1)灰色预测模型的改进与应用[J]. 南京理工大学学报, 2020, 44(5):575-582. |
[ Yang G H, Yan Y, Yang H Z. Application of improved GM(1, 1) grey prediction model[J]. Journal of Nanjing University of Science and Technology, 2020, 44(5):575-582.] | |
[49] |
王风云, 丛龙园. 基于灰色模型的可再生能源电价补贴收支平衡[J]. 资源科学, 2021, 43(9):1743-1751.
doi: 10.18402/resci.2021.09.03 |
[ Wang F Y, Cong L Y. Revenue and expenditure balance of renewable energy electricity price subsidies based on grey model[J]. Resources Science, 2021, 43(9):1743-1751.] | |
[50] | 周成, 冯学钢, 唐睿. 区域经济-生态环境-旅游产业耦合协调发展分析与预测: 以长江经济带沿线各省市为例[J]. 经济地理, 2016, 36(3):186-193. |
[ Zhou C, Feng X G, Tang R. Analysis and forecast of coupling coordination development among the regional economy-ecological environment-tourism industry: A case study of provinces along the Yangtze Economic Zone[J]. Economic Geography, 2016, 36(3):186-193.] |
[1] | 郭浩, 江耀, 王静爱, 梁勤欧. 旱灾风险防范下农户种植策略与政府主导目标一致性——以内蒙古兴和县为例[J]. 资源科学, 2021, 43(9): 1889-1902. |
[2] | 孔雪松, 陈俊励, 刘殿锋, 赵翔. 农村宅基地退出潜力空间分异与分层协同分区——以湖北宜城市为例[J]. 资源科学, 2021, 43(7): 1322-1334. |
[3] | 赵宏波, 魏甲晨, 孙东琪, 王爽, 刘雅馨, 谭俊涛. 大城市内部“生产-生活-生态空间”多尺度耦合协调度——以郑州市为例[J]. 资源科学, 2021, 43(5): 944-953. |
[4] | 陈琛, 郭甲嘉, 沈大军. 黄河流域水量分配和再分配[J]. 资源科学, 2021, 43(4): 799-812. |
[5] | 王兵, 祝葶, 杜敏哲. 治理模式差异视角下的城市水资源系统全要素生产率[J]. 资源科学, 2021, 43(4): 813-822. |
[6] | 张志强, 刘欢, 左其亭, 于锦涛, 李阳. 2000—2019年黄河流域植被覆盖度时空变化[J]. 资源科学, 2021, 43(4): 849-858. |
[7] | 王敏晰, 马宇, 刘威, 王亚杰, 李新. 生态文明建设与资源循环利用耦合关系[J]. 资源科学, 2021, 43(3): 577-587. |
[8] | 刘妍心, 李华姣, 安海忠, 管建和, 刘宁, 韩晓丹, 李超, 史江兰. 基于“废钢回收”的中国钢铁产业链资源-经济-环境动态耦合[J]. 资源科学, 2021, 43(3): 588-600. |
[9] | 刘贝贝, 左其亭, 刁艺璇. 绿色科技创新在黄河流域生态保护和高质量发展中的价值体现及实现路径[J]. 资源科学, 2021, 43(2): 423-432. |
[10] | 李贺, 何志杰, 黄翀, 刘庆生, 刘高焕, 张晨晨. 2000—2019年缅甸南部橡胶林时空演变[J]. 资源科学, 2021, 43(12): 2403-2415. |
[11] | 马军旗, 乐章. 黄河流域生态补偿的水环境治理效应——基于双重差分方法的检验[J]. 资源科学, 2021, 43(11): 2277-2288. |
[12] | 王良栋, 吴乐英, 陈玉龙, 马晓哲, 杜梦娜. 经济平稳增长下黄河流域相关省区碳达峰时间及峰值水平[J]. 资源科学, 2021, 43(11): 2331-2341. |
[13] | 秦腾, 佟金萍. 长江经济带水-能源-粮食耦合效率的时空演化及影响因素[J]. 资源科学, 2021, 43(10): 2068-2080. |
[14] | 张立新, 毕旭, 黄志基. 经济转型背景下城市工业用地利用效率——以长江经济带城市为例[J]. 资源科学, 2020, 42(9): 1728-1738. |
[15] | 杨凯悦, 宋永永, 薛东前. 黄土高原乡村聚落用地时空演变与影响因素[J]. 资源科学, 2020, 42(7): 1311-1324. |
|