资源科学 ›› 2021, Vol. 43 ›› Issue (12): 2403-2415.doi: 10.18402/resci.2021.12.04
• “澜沧江—湄公河流域农业资源与环境”专栏 • 上一篇 下一篇
李贺1(), 何志杰1,2, 黄翀1(
), 刘庆生1, 刘高焕1, 张晨晨1
收稿日期:
2021-05-19
修回日期:
2021-11-02
出版日期:
2021-12-25
发布日期:
2022-02-25
通讯作者:
黄翀,男,安徽六安人,博士,副研究员,主要从事生态遥感研究。E-mail: huangch@lreis.ac.cn作者简介:
李贺,男,江苏徐州人,博士,副研究员,主要从事资源环境遥感研究。E-mail: lih@lreis.ac.cn
基金资助:
LI He1(), HE Zhijie1,2, HUANG Chong1(
), LIU Qingsheng1, LIU Gaohuan1, ZHANG Chenchen1
Received:
2021-05-19
Revised:
2021-11-02
Online:
2021-12-25
Published:
2022-02-25
摘要:
橡胶林是东南亚地区重要的经济林种和战略物资,及时、准确掌握橡胶林时空动态信息对于可持续的森林资源监测、管理和维护生态环境健康稳定具有重要意义。为深入探索缅甸孟邦橡胶林的时空动态过程,本文选取2000—2019年Landsat长时间序列遥感影像,利用连续土地覆被变化检测与分类(CCDC)算法,通过变化检测,得到研究区的各连续变化像元;然后,利用随机森林(RF)算法对变化像元进行分类得到橡胶林及相关地物分类结果;最后,在精度验证的基础上,探索分析橡胶林时空演变和造成的其他土地覆被类型变化。研究结果表明:①利用Landsat时序遥感数据,结合CCDC算法可以准确提取橡胶林及相关地物的时空分布,总体分类精度优于85%,F1分数大于0.80,其中橡胶林的分类精度优于80%。②2000—2019年缅甸孟邦橡胶林分布格局总体呈逐年扩张趋势,至2019年橡胶林面积由7.25万hm2增加至19.72万hm2,面积增加1.72倍。③从土地利用转换角度得出,橡胶林的扩张主要由天然林和耕地转换而来,20年来转换总面积为12.47万hm2;其中,天然林减少面积最大,为10.52万hm2,占总土地变化面积的84.36%。橡胶林扩张受社会经济因素的价格影响,20年来,橡胶林扩张造成的天然林和耕地变化均呈现先增大后减少趋势,与橡胶年平均出口价格波动速率基本吻合。相关结果可以为当地橡胶林持续监测与生态环境可持续发展提供决策支持。
李贺, 何志杰, 黄翀, 刘庆生, 刘高焕, 张晨晨. 2000—2019年缅甸南部橡胶林时空演变[J]. 资源科学, 2021, 43(12): 2403-2415.
LI He, HE Zhijie, HUANG Chong, LIU Qingsheng, LIU Gaohuan, ZHANG Chenchen. Spatiotemporal evolution of rubber forests in southern Myanmar during 2000-2019[J]. Resources Science, 2021, 43(12): 2403-2415.
表1
2000—2015年橡胶林及相关土地覆被类型精度验证
类型 | 2000年 | 2005年 | |||
---|---|---|---|---|---|
制图精度/% | 用户精度/% | 制图精度/% | 用户精度/% | ||
天然林 | 88.62 | 88.98 | 87.85 | 89.10 | |
橡胶林 | 80.57 | 81.98 | 83.08 | 84.34 | |
耕地 | 76.92 | 71.43 | 82.35 | 77.78 | |
总体精度/% | 85.17 | 86.07 | |||
F1 | 0.81 | 0.84 | |||
类型 | 2010年 | 2015年 | |||
制图精度% | 用户精度/% | 制图精度/% | 用户精度/% | ||
天然林 | 83.09 | 86.92 | 76.92 | 75.00 | |
橡胶林 | 91.99 | 90.41 | 93.88 | 94.29 | |
耕地 | 77.27 | 73.91 | 77.42 | 80.00 | |
总体精度/% | 88.54 | 90.34 | |||
F1 | 0.84 | 0.83 |
[1] |
Azizan F A, Kiloes A M, Astuti I S, et al. Application of optical remote sensing in rubber plantations: A systematic review[J]. Remote Sensing, 2021, 13(3):429-429.
doi: 10.3390/rs13030429 |
[2] | 李宇宸, 张军, 薛宇飞, 等. 基于Google Earth Engine的中老缅交界区橡胶林分布遥感提取[J]. 农业工程学报, 2020, 36(8):174-181. |
[ Li Y C, Zhang J, Xue Y F, et al. Remote sensing image extraction for rubber forest distribution in the border regions of China, Laos and Myanmar based on Google Earth Engine platform[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(8):174-181.] | |
[3] |
李鹏, 封志明. 地缘经济背景下的老挝橡胶林地扩张监测及其影响研究综述[J]. 地理科学进展, 2016, 35(3):286-294.
doi: 10.18306/dlkxjz.2016.03.003 |
[ Li P, Feng Z M. Review of remote sensing monitoring and socioeconomic and environmental impacts of rubber plantation expansion in Laos in the geo-economic context[J]. Progress in Geography, 2016, 35(3):286-294.] | |
[4] | Food and Agriculture Organization of the United Nations (FAO). FAOSTAT Statistical Database 2020[DB/OL]. (2021-12-03) [2021-12-20]. http://www.fao.org/faostat/en/?#data/QC. |
[5] | 李亚飞, 刘高焕, 黄翀. 基于HJ-1CCD数据的西双版纳地区橡胶林分布特征[J]. 中国科学: 信息科学, 2011, 41(S1):166-176. |
[ Li Y F, Liu G H, Huang C. Analysis of distribution characteristics of Hevea brasiliensis in the Xishuangbanna area based on HJ-1 satellite data[J]. Scientia Sinica Informationis, 2011, 41(S1):166-176.] | |
[6] |
Kusakabe K, Myae A C. Precarity and vulnerability: Rubber plantations in northern Laos and Northern Shan State, Myanmar[J]. Journal of Contemporary Asia, 2019, 49(4):586-601.
doi: 10.1080/00472336.2018.1554161 |
[7] | 李增元, 赵磊, 李堃, 等. 合成孔径雷达森林资源监测技术研究综述[J]. 南京信息工程大学学报(自然科学版), 2020, 12(2):150-158. |
[ Li Z Y, Zhao L, Li K, et al. A survey of developments on forest resources monitoring technology of synthetic aperture radar[J]. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2020, 12(2):150-158.] | |
[8] | 颜伟, 周雯, 易利龙, 等. 森林类型遥感分类及变化监测研究进展[J]. 遥感技术与应用, 2019, 34(3):445-454. |
[ Yan W, Zhou W, Yi L L, et al. Research progress of remote sensing classification and change monitoring on forest types[J]. Remote Sensing Technology and Application, 2019, 34(3):445-454.] | |
[9] | 苗苗, 岳彩荣. 橡胶林信息提取技术研究综述[J]. 林业调查规划, 2017, 42(1):11-15. |
[ Miao M, Yue C R. Literature review of information extraction technology of rubber forest[J]. Forest Inventory and Planning, 2017, 42(1):11-15.] | |
[10] |
Sun Z C, Leinenkugel P, Guo H D, et al. Extracting distribution and expansion of rubber plantations from Landsat imagery using the C5.0 decision tree method[J]. Journal of Applied Remote Sensing, 2017, DOI: 10.1117/1.JRS.11.026011.
doi: 10.1117/1.JRS.11.026011 |
[11] | 刘晓娜, 封志明, 姜鲁光, 等. 西双版纳橡胶林地的遥感识别与数字制图[J]. 资源科学, 2012, 34(9):1769-1780. |
[ Liu X N, Feng Z M, Jiang L G, et al. Rubber plantations in Xishuangbanna: Remote sensing identification and digital mapping[J]. Resources Science, 2012, 34(9):1769-1780.] | |
[12] | 胡盈盈, 戴声佩, 罗红霞, 等. 2001-2015年海南岛橡胶林物候时空变化特征分析[J/OL]. 自然资源遥感,(2021-10-12). https://kns.cnki.net/kcms/detail/11.2514.P.20211012.1357.002.html. |
[ Hu Y Y, Dai S P, Luo H X, et al. Temporal and spatial variations of rubber forest phenology in Hainan Island during 2001-2015[J/OL]. Remote Sensing for Natural Resources,(2021-10-12). https://kns.cnki.net/kcms/detail/11.2514.P.20211012.1357.002.html. ] | |
[13] | 蒋永泉, 史正涛, 高书鹏. 基于多源遥感数据橡胶林识别及其种植适宜区研究[J]. 林业资源管理, 2020, (6):54-60. |
[ Jiang Y Q, Shi Z T, Gao S P. Research on rubber plantation identification and suitable areas based on multi-source remote sensing data[J]. Forest Resources Management, 2020, (6):54-60.] | |
[14] | 李伟涛. 高分辨率遥感森林植被分类提取研究[D]. 北京: 北京林业大学, 2016. |
[ Li W T. Forest Vegetation Classification Using High Resolution Remote Sensing Image[D]. Beijing: Beijing Forestry University, 2016.] | |
[15] |
Poortinga A, Tenneson K, Shapiro A, et al. Mapping plantations in Myanmar by fusing Landsat-8, Sentinel-2 and Sentinel-1 data along with systematic error quantification[J]. Remote Sensing, 2019, DOI: 10.3390/rs11070831
doi: 10.3390/rs11070831 |
[16] |
Li Z, Fox J M. Mapping rubber tree growth in mainland Southeast Asia using time-series MODIS 250 m NDVI and statistical data[J]. Applied Geography, 2012, 32(2):420-432.
doi: 10.1016/j.apgeog.2011.06.018 |
[17] | 陈帮乾, 云挺, 安锋, 等. 基于Landsat和Sentinel-2时间序列影像的海南西部橡胶林龙卷风灾情评估[J]. 遥感学报, 2021, 25(3):816-829. |
[ Chen B Q, Yun T, An F, et al. Assessment of tornado disaster in rubber plantation in western Hainan using Landsat and Sentinel-2 time series images[J]. National Remote Sensing Bulletin, 2021, 25(3):816-829.] | |
[18] | 黄翀, 张晨晨, 刘庆生, 等. 结合光学与雷达影像多特征的热带典型人工林树种精细识别[J]. 林业科学, 2021, 57(7):80-91. |
[ Huang C, Zhang C C, Liu Q S, et al. Multi-feature classification of optical and SAR remote sensing images for typical tropical plantation species[J]. Scientia Silvae Sinicae, 2021, 37(7):80-91.] | |
[19] | 李伟光, 张京红, 刘少军, 等. 基于GEE的东南亚主产区橡胶林分布遥感提取[J]. 热带作物学报, 2021, 42(11):3345-3350. |
[ Li W G, Zhang J H, Liu S J, et al. GEE-based extraction of rubber forest distribution in main producing areas of Southeast Asia[J]. Chinese Journal of Tropical Crops, 2021, 42(11):3345-3350.] | |
[20] |
Yusof N, Shafri H Z M, Shaharum N S N. The use of Landsat-8 and Sentinel-2 imageries in detecting and mapping rubber trees[J]. Journal of Rubber Research, 2021, 24(1):121-135.
doi: 10.1007/s42464-020-00078-0 |
[21] |
Shimizu K, Ahmed O S, Ponce-Hernandez R, et al. Attribution of disturbance agents to forest change using a Landsat time series in tropical seasonal forests in the Bago Mountains, Myanmar[J]. Forests, 2017, DOI: 10.3390/f8060218.
doi: 10.3390/f8060218 |
[22] |
Chen B Q, Xiao X M, Wu Z X, et al. Identifying establishment year and pre-conversion land cover of rubber plantations on Hainan Island, China using landsat data during 1987-2015[J]. Remote Sensing, 2018, DOI: 10.3390/rs10081240.
doi: 10.3390/rs10081240 |
[23] |
Li Y C, Liu C L, Zhang J, et al. Monitoring spatial and temporal patterns of rubber plantation dynamics using time-series Landsat images and Google Earth Engine[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:9450-9461.
doi: 10.1109/JSTARS.2021.3110763 |
[24] |
汤冬梅, 樊辉, 张瑶. Landsat时序变化检测综述[J]. 地球信息科学学报, 2017, 19(8):1069-1079.
doi: 10.3724/SP.J.1047.2017.01069 |
[ Tang D M, Fan H, Zhang Y. Review on Landsat time series change detection methods[J]. Journal of Geo-Information Science, 2017, 19(8):1069-1079.] | |
[25] |
Kennedy R E, Cohen W B, Schroeder T A. Trajectory-based change detection for automated characterization of forest disturbance dynamics[J]. Remote Sensing of Environment, 2007, 110(3):370-386.
doi: 10.1016/j.rse.2007.03.010 |
[26] |
Ahmed O S, Franklin S E, Wulder M A. Interpretation of forest disturbance using a time series of Landsat imagery and canopy structure from airborne lidar[J]. Canadian Journal of Remote Sensing, 2014, 39(6):521-542.
doi: 10.5589/m14-004 |
[27] |
Huang C Q, Goward S N, Schleeweis K, et al. Dynamics of national forests assessed using the Landsat record: Case studies in eastern United States[J]. Remote Sensing of Environment, 2009, 113(7):1430-1442.
doi: 10.1016/j.rse.2008.06.016 |
[28] |
Kennedy R E, Yang Z, Cohen W B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. Land Trendr: Temporal segmentation algorithms[J]. Remote Sensing of Environment, 2010, 114(12):2897-2910.
doi: 10.1016/j.rse.2010.07.008 |
[29] |
Verbesselt J, Hyndman R, Newnham G, et al. Detecting trend and seasonal changes in satellite image time series[J]. Remote Sensing of Environment, 2010, 114(1):106-115.
doi: 10.1016/j.rse.2009.08.014 |
[30] |
Zhu Z, Woodcock C E, Olofsson P. Continuous monitoring of forest disturbance using all available Landsat imagery[J]. Remote Sensing of Environment, 2012, 122:75-91.
doi: 10.1016/j.rse.2011.10.030 |
[31] |
Zhu Z, Woodcock C E. Continuous change detection and classification of land cover using all available Landsat data[J]. Remote Sensing of Environment, 2014, 144:152-171.
doi: 10.1016/j.rse.2014.01.011 |
[32] |
Gong P, Liu H, Zhang M N, et al. Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017[J]. Science Bulletin, 2019, 64(6):370-373.
doi: 10.1016/j.scib.2019.03.002 |
[33] |
Li H, Fu D, Huang C, et al. An approach to high-resolution rice paddy mapping using time-series Sentinel-1 SAR data in the Mun River Basin, Thailand[J]. Remote Sensing, 2020, 12(23):3959-3959.
doi: 10.3390/rs12233959 |
[34] | 牟晓莉, 李贺, 黄翀, 等. Google Earth Engine在土地覆被遥感信息提取中的研究进展[J]. 国土资源遥感, 2021, 33(2):1-10. |
[ Mou X L, L H, Huang C, et al. Application progress of Google Earth Engine in land use and land cover remote sensing information extraction[J]. Remote Sensing for Natural Resources, 2021, 33(2):1-10.] | |
[35] |
Zhu Z, Woodcock C E. Object-based cloud and cloud shadow detection in Landsat imagery[J]. Remote Sensing of Environment, 2012, 118:83-94.
doi: 10.1016/j.rse.2011.10.028 |
[36] | 高书鹏, 史正涛, 刘晓龙, 等. 基于高时空分辨率可见光遥感数据的热带山地橡胶林识别[J]. 遥感技术与应用, 2018, 33(6):1122-1131. |
[ Gao S P, Shi Z T, Liu X L, et al. Identification of rubber plantations in tropical mountainous region based on high spatio-temporal resolution visible remote sensing data[J]. Remote Sensing Technology and Application, 2018, 33(6):1122-1131.] | |
[37] | 李阳阳, 张军, 刘陈立, 等. 老挝北部5省橡胶林提取及时空扩张研究[J]. 林业科学研究, 2017, 30(5):709-717. |
[ Li Y Y, Zhang J, Liu C L, et al. Research on extraction and spatial-temporal expansion of rubber forest in five provinces of northern Laos based on multi-source remote sensing[J]. Forest Research, 2017, 30(5):709-717.] | |
[38] | Breiman L. Random forests[J]. Machine Learning, 2001, 5:5-32. |
[39] | 吕红燕, 冯倩. 随机森林算法研究综述[J]. 河北省科学院学报, 2019, 36(3):37-41. |
[ Lv H Y, Feng Q. A review of random forests algorithm[J]. Journal of the Hebei Academy of Sciences, 2019, 36(3):37-41.] | |
[40] | 何云, 黄翀, 李贺, 等. 基于Sentinel-2A影像特征优选的随机森林土地覆盖分类[J]. 资源科学, 2019, 41(5):992-1001. |
[ He Y, Huang C, Li H, et al. Land-cover classification of random forest based on Sentinel-2A image feature optimization[J]. Resources Science, 2019, 41(5):992-1001.] | |
[41] | 于新洋, 赵庚星, 常春艳, 等. 随机森林遥感信息提取研究进展及应用展望[J]. 遥感信息, 2019, 34(2):8-14. |
[ Yu X Y, Zhao G X, Chang C Y, et al. Random forest classifier in remote sensing information extraction: A review of applications and future development[J]. Remote Sensing Information, 2019, 34(2):8-14.] | |
[42] |
Wurm M, Taubenböck H, Weigand M, et al. Slum mapping in polarimetric SAR data using spatial features[J]. Remote Sensing of Environment, 2017, 194:190-204.
doi: 10.1016/j.rse.2017.03.030 |
[43] | U.S. Geological Survey. Land Change Monitoring, Assessment, and Projection (LCMAP) Continuous Change Detection and Classification (CCDC) Algorithm Description Document (ADD) [DB/OL].(2020-03-12) [2021-12-20]. https://www.usgs.gov/media/files/lcmap-ccdc-add. |
[44] |
Gorelick N, Hancher M, Dixon M, et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone[J]. Remote Sensing of Environment, 2017, 202:18-27.
doi: 10.1016/j.rse.2017.06.031 |
[45] | 柴旭荣, 李明, 周义, 等. 影像的土地覆被快速分类[J]. 遥感技术与应用, 2020, 35(2):315-325. |
[ Chai X R, Li M, Zhou Y, et al. Rapid land cover classification using landsat time series based on the Google Earth Engine[J]. Remote Sensing Technology and Application, 2020, 35(2):315-325.] | |
[46] | 曹博文, 杨现坤, 邱俊良. 基于Google Earth Engine的遥感大数据分析研究进展与应用[J]. 地理空间信息, 2021, 19(4):13-19. |
[ Cao B W, Yang X K, Qiu J L. Research progress and application of remote sensing big data analysis based on Google Earth Engine[J]. Geospatial Information, 2021, 19(4):13-19.] |
[1] | 吴超, 徐伟恒, 肖池伟, 王秋华, 袁华, 董建娥, 黄邵东, 熊源. 滇中地区典型火烧迹地恢复率动态变化及其影响因子[J]. 资源科学, 2021, 43(12): 2465-2474. |
[2] | 徐辉, 王亿文, 张宗艳, 高一公, 张大伟. 黄河流域水-能源-粮食耦合机理及协调发展时空演变[J]. 资源科学, 2021, 43(12): 2526-2537. |
[3] | 张立新, 毕旭, 黄志基. 经济转型背景下城市工业用地利用效率——以长江经济带城市为例[J]. 资源科学, 2020, 42(9): 1728-1738. |
[4] | 杨凯悦, 宋永永, 薛东前. 黄土高原乡村聚落用地时空演变与影响因素[J]. 资源科学, 2020, 42(7): 1311-1324. |
[5] | 李贺, 黄翀, 张晨晨, 刘庆生, 刘高焕. 1976年以来黄河三角洲海岸冲淤演变与入海水沙过程的关系[J]. 资源科学, 2020, 42(3): 486-498. |
[6] | 岳立, 薛丹. 黄河流域沿线城市绿色发展效率时空演变及其影响因素[J]. 资源科学, 2020, 42(12): 2274-2284. |
[7] | 徐辉, 师诺, 武玲玲, 张大伟. 黄河流域高质量发展水平测度及其时空演变[J]. 资源科学, 2020, 42(1): 115-126. |
[8] | 隋玉正, 陈小璇, 李淑娟, 孙大鹏, 马歆宁, 周涛. 海岸带蓝碳时空演变及其服务价值评估——以胶州湾为例[J]. 资源科学, 2019, 41(11): 2119-2130. |
[9] | 宋周莺,虞洋,梁龙武,王振波. 中国经济发展方式的时空演变特征及其环境效应[J]. 资源科学, 2019, 41(10): 1886-1896. |
[10] | 赵东霞, 韩增林, 任启龙, 刘万波, 裴倩. 市域人口老龄化空间特征与养老资源匹配关系研究——以东北三省为例[J]. 资源科学, 2018, 40(9): 1773-1786. |
[11] | 徐珊珊, 赵清贺, 曹梓豪, 张祎帆. 北江干流河岸植被缓冲带景观渗透性时空变化及其影响因素[J]. 资源科学, 2018, 40(6): 1267-1276. |
[12] | 吴溪, 郭斌, 陈忠升, 史文娇. 基于Landsat影像的环胶州湾不透水面格局演变过程[J]. 资源科学, 2018, 40(11): 2260-2269. |
[13] | 董雪, 田静, 吴骅, 刘素华. 考虑土壤水分影响的比辐射率方法在地表温度反演中的应用[J]. 资源科学, 2017, 39(8): 1592-1604. |
[14] | 石育中, 李文龙, 鲁大铭, 王子侨, 杨新军. 基于乡镇尺度的黄土高原干旱脆弱性时空演变分析——以榆中县为例[J]. 资源科学, 2017, 39(11): 2130-2140. |
[15] | 周林飞, 姚雪, 芦晓峰. 基于相容粗糙集的BP神经网络湿地覆被信息提取——以双台子河口湿地为例[J]. 资源科学, 2016, 38(8): 1538-1549. |
|