资源科学 ›› 2021, Vol. 43 ›› Issue (12): 2369-2380.doi: 10.18402/resci.2021.12.01
• “澜沧江—湄公河流域农业资源与环境”专栏 • 下一篇
收稿日期:
2021-05-11
修回日期:
2021-07-11
出版日期:
2021-12-25
发布日期:
2022-02-16
作者简介:
吴良,男,湖南临湘人,助理研究员,主要从事粮食安全和可持续食物系统等方面研究。E-mail: wuliang@igsnrr.ac.cn
基金资助:
WU Liang(), SHEN Lei, CHENG Shengkui
Received:
2021-05-11
Revised:
2021-07-11
Online:
2021-12-25
Published:
2022-02-16
摘要:
农作物潜在分布区是掌握农作物分布范围、估算农作物产量、评估气候变化对农业生产的影响、规划调整农业种植结构,以及规避自然和市场风险等的重要参考。中南半岛是全球水稻种植最为集中的地区之一,对全球粮食安全意义重大。本文采用物种分布模型MaxEnt,对中南半岛水稻的潜在分布区进行模拟。研究结果显示:①高程、坡度、灌溉距离成本、等温性、年温度变幅、年降雨量、降水变异系数和最暖季降雨量等8个环境与气候因子是该地区水稻分布的主要影响因素;②将水稻样本按照种植类型分为3类(低地灌溉、低地雨养和高地雨养)进行模拟比利用全部样本进行模拟的精度显著提高;③中南半岛水稻的潜在分布区为1.140亿hm2,占全部国土面积的53.3%。本文模拟的潜在分布区可以为指引中南半岛、特别是澜沧江—湄公河流域水稻种植,保障区域粮食供给和优化农业产业布局提供科学支撑。
吴良, 沈镭, 成升魁. 中南半岛稻谷潜在分布区模拟[J]. 资源科学, 2021, 43(12): 2369-2380.
WU Liang, SHEN Lei, CHENG Shengkui. Potential distribution modeling of rice production in the Indo-China Peninsula[J]. Resources Science, 2021, 43(12): 2369-2380.
表1
环境变量概况及其对模型的贡献率
名称 | 定义或计算方法 | 单位 | 对模型的贡献率/% | |||
---|---|---|---|---|---|---|
全部 | 低地灌溉 | 低地雨养 | 高地雨养 | |||
高程(DEM) | 海拔高度(GTOPO30) | m | 9.0 | 75.0 | 57.8 | 54.7 |
坡度(slope) | 坡度= | ° | 15.2 | 13.2 | 14.0 | 7.0 |
灌溉距离成本(costdist) | 地面单元离河流的最近距离 | km | 12.5 | 3.4 | 13.6 | 4.6 |
等温性(bio3) | bio3= | - | 17.9 | 0.9 | 2.9 | 6.1 |
温度变幅(bio7) | bio7=最暖月最高气温-最冷月最低气温 | ℃ | 19.2 | 2.9 | 6.1 | 5.6 |
年降雨量(bio12) | 多年平均降雨量 | mm | 9.8 | 1.3 | 1.3 | 1.2 |
降水变异系数(bio15) | 每月降水量变异系数 | - | 1.3 | 3.2 | 1.1 | 6.2 |
最暖季降雨量(bio18) | 温度最高季节所有月份降雨量之和 | mm | 15.0 | 0.2 | 3.2 | 14.6 |
[1] |
Soberón J, Nakamura M. Niches and distributional areas: Concepts, methods, and assumptions[J]. Proceedings of the National Academy of Sciences, 2009, 106:19644-19650.
doi: 10.1073/pnas.0901637106 |
[2] | 武晋雯, 孙龙彧, 纪瑞鹏, 等. 辽宁水稻气候适宜度日尺度评价研究[J]. 资源科学, 2017, 39(8):1605-1613. |
[ Wu J W, Sun L Y, Ji R P, et al. Intraday evaluation modeling of climatic suitability for rice in Liaoning Province[J]. Resources Science, 2017, 39(8):1605-1613.] | |
[3] |
罗海平, 邹楠, 胡学英, 等. 1980-2019年中国粮食主产区主要粮食作物气候生产潜力与气候资源利用效率[J]. 资源科学, 2021, 43(6):1234-1247.
doi: 10.18402/resci.2021.06.14 |
[ Luo H P, Zou N, Hu X Y, et al. Climatic potential productivity and resources utilization efficiency of major grain crops in the main grain production areas of China, 1980-2019[J]. Resources Science, 2021, 43(6):1234-1247.] | |
[4] |
Grinnell J. Barriers to distribution as regards birds and mammals[J]. The American Naturalist, 1914, 48:248-254.
doi: 10.1086/279402 |
[5] |
Hutchinson G E. Concluding remarks on the cold spring harbor symposia on quantitative biology[J]. Cold Spring Harbor Symposia on Quantitative Biology, 1957, 22:415-427.
doi: 10.1101/SQB.1957.022.01.039 |
[6] |
Guisan A, Thuiller W. Predicting species distribution: Offering more than simple habitat models[J]. Ecology Letters, 2005, 8(9):993-1009.
doi: 10.1111/ele.2005.8.issue-9 |
[7] |
Elith J, Leathwick J R. Species distribution models: Ecological explanation and prediction across space and time[J]. Annual Review of Ecology, Evolution, and Systematics, 2009, 40(1):677-697.
doi: 10.1146/ecolsys.2009.40.issue-1 |
[8] |
Estes L D, Bradley B A, Beukes H, et al. Comparing mechanistic and empirical model projections of crop suitability and productivity: Implications for ecological forecasting[J]. Global Ecology and Biogeography, 2013, 22(8):1007-1018.
doi: 10.1111/geb.12034 |
[9] | Hoogenboom G, Porter C H, Boote K J, et al. The DSSAT Crop Modeling Ecosystem[A]. Boote K J. Advances in Crop Modeling for a Sustainable Agriculture[C]. Cambridge: Burleigh Dodds Science Publishing, 2019. |
[10] |
Lobell D B. The use of satellite data for crop yield gap analysis[J]. Field Crops Research, 2013, 143:56-64.
doi: 10.1016/j.fcr.2012.08.008 |
[11] |
Wu B F, Meng J H, Li Q Z, et al. Remote sensing-based global crop monitoring: Experiences with China’s CropWatch system[J]. International Journal of Digital Earth, 2014, 7(2):113-137.
doi: 10.1080/17538947.2013.821185 |
[12] | Franklin J, Miller J A. Mapping Species Distributions: Spatial Inference and Prediction[M]. Cambridge: Cambridge University Press, 2010. |
[13] |
Akpoti K, Dossou-Yovo E R, Zwart S J, et al. The potential for expansion of irrigated rice under alternate wetting and drying in Burkina Faso[J]. Agricultural Water Management, 2021, DOI: 10.1016/j.agwat.2021.106758.
doi: 10.1016/j.agwat.2021.106758 |
[14] | Akpoti K, Kabo-bah A T, Dossou-Yovo E R, et al. Mapping suitability for rice production in inland valley landscapes in Benin and Togo using environmental niche modeling[J]. Science of the Total Environment, 2020, 709:1-19. |
[15] |
Mohammed I, Marshall M, de Bie K, et al. A blended census and multiscale remote sensing approach to probabilistic cropland mapping in complex landscapes[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 161:233-245.
doi: 10.1016/j.isprsjprs.2020.01.024 |
[16] |
Phillips S J, Dudik M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation[J]. Ecography, 2008, 31(2):161-175.
doi: 10.1111/j.0906-7590.2008.5203.x |
[17] |
Elith J, Phillips S J, Hastie T, et al. A statistical explanation of MaxEnt for ecologists[J]. Diversity and Distributions, 2011, 17(1):43-57.
doi: 10.1111/ddi.2010.17.issue-1 |
[18] |
Phillips S J, Anderson R P, Schapire R E. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 2006, 190(3):231-259.
doi: 10.1016/j.ecolmodel.2005.03.026 |
[19] |
Elith J, Graham C H, Anderson R P, et al. Novel methods improve prediction of species’ distributions from occurrence data[J]. Ecography, 2006, 29(2):129-151.
doi: 10.1111/j.2006.0906-7590.04596.x |
[20] |
Radosavljevic A, Anderson R P. Making better MAXENT models of species distributions: Complexity, overfitting and evaluation[J]. Journal of Biogeography, 2014, 41(4):629-643.
doi: 10.1111/jbi.12227 |
[21] |
Hu W J, Wang Y Y, Zhang D, et al. Mapping the potential of mangrove forest restoration based on species distribution models: A case study in China[J]. Science of the Total Environment, 2020, 748:142321.
doi: 10.1016/j.scitotenv.2020.142321 |
[22] |
Singh M, Arunachalam R, Kumar L. Modeling potential hotspots of invasive Prosopisjuliflora (Swartz) DC in India[J]. Ecological Informatics, 2021, DOI: 10.1016/j.ecoinf.2021.101386.
doi: 10.1016/j.ecoinf.2021.101386 |
[23] |
Chhogyel N, Kumar L, Bajgai Y, et al. Prediction of Bhutan’s ecological distribution of rice (Oryza sativa L. ) under the impact of climate change through maximum entropy modelling[J]. The Journal of Agricultural Science, 2020, 158(1):25-37.
doi: 10.1017/S0021859620000350 |
[24] |
Dang A T N, Kumar L, Reid M. Modelling the potential impacts of climate change on rice cultivation in Mekong Delta, Vietnam[J]. Sustainability, 2020, DOI: 10.3390/su12229608.
doi: 10.3390/su12229608 |
[25] |
Beck J, Boller M, Erhardt A, et al. Spatial bias in the GBIF database and its effect on modeling species’ geographic distributions[J]. Ecological Informatics, 2014, 19:10-15.
doi: 10.1016/j.ecoinf.2013.11.002 |
[26] |
Bystriakova N, Peregrym M, Erkens R H J, et al. Sampling bias in geographic and environmental space and its effect on the predictive power of species distribution models[J]. Systematics and Biodiversity, 2012, 10(3):305-315.
doi: 10.1080/14772000.2012.705357 |
[27] |
Fick S E, Hijmans R J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas[J]. International Journal of Climatology, 2017, 37(12):4302-4315.
doi: 10.1002/joc.2017.37.issue-12 |
[28] | Smith M J, Goodchild M F, Longley P A. Geospatial Analysis: A Comprehensive Guide to Principles Techniques and Software Tools[M]. Sleaford: The Winchelsea Press, 2018. |
[29] | Wieder W. Regridded Harmonized World Soil Database v1.2 [DB/OL]. (2014-09-15) [2021-03-05]. https://daac.ornl.gov/SOILS/guides/HWSD.html. |
[30] | 孔维尧, 李欣海, 邹红菲. 最大熵模型在物种分布预测中的优化[J]. 应用生态学报, 2019, 30(6):2116-2128. |
[ Kong W Y, Li X H, Zou H F. Optimizing MaxEnt model in the prediction of species distribution[J]. Chinese Journal of Applied Ecology, 2019, 30(6):2116-2128.] | |
[31] | International Food Policy Research Institute. Global Spatially-Disaggregated Crop Production Statistics Data for 2010 Version 2.0[DB/OL].(2019-04-04) [2021-07-11]. https://cgiarcsi.community/2019/01/04/global-spatially-disaggregated-crop-production-statistics-data-for-2010/. |
[32] |
Xiao X M, Boles S, Frolking S, et al. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images[J]. Remote Sensing of Environment, 2006, 100(1):95-113.
doi: 10.1016/j.rse.2005.10.004 |
[33] |
Zhang G L, Xiao X M, Dong J W, et al. Fingerprint of rice paddies in spatial-temporal dynamics of atmospheric methane concentration in monsoon Asia[J]. Nature Communications, 2020, DOI: 10.1038/s41467-019-14155-5.
doi: 10.1038/s41467-019-14155-5 |
[34] |
Scrucca L, Fop M, Murphy T B, et al. Mclust 5: Clustering, classification and density estimation using gaussian finite mixture models[J]. The R Journal, 2016, 8(1):289-317.
doi: 10.32614/RJ-2016-021 |
[35] | The R Core Team. R: A Language and Environment for Statistical Computing[R/OL]. (2012-10-26) [2021-07-11]. https: //ishare.iask.sina.com.cn/f/35148866.html. |
[36] | 段居琦, 周广胜. 中国水稻潜在分布及其气候特征[J]. 生态学报, 2011, 31(22):6659-6668. |
[ Duan J Q, Zhou G S. Potential distribution of rice in China and its climate characteristics[J]. Acta Ecologica Sinica, 2011, 31(22):6659-6668.] | |
[37] |
Poor E E, Scheick B K, Mullinax J. Multiscale consensus habitat modeling for landscape level conservation prioritization[J]. Scientific Reports, 2020, DOI: 10.1038/s41598-020-74716-3.
doi: 10.1038/s41598-020-74716-3 |
[38] |
Goudarzi F, Hemami M R, Malekian M, et al. Species versus within-species niches: A multi-modelling approach to assess range size of a spring-dwelling amphibian[J]. Scientific Reports, 2021, DOI: 10.1038/s41598-020-79783-0.
doi: 10.1038/s41598-020-79783-0 |
[1] | 黄炎忠, 罗小锋, 李兆亮, 刘迪. 农户兼业对粮食生产效率的非线性影响[J]. 资源科学, 2021, 43(8): 1605-1614. |
[2] | 姜鲁光, 杨成, 封志明, 刘晔. 面向多目标情景的大清河流域水资源利用权衡[J]. 资源科学, 2021, 43(8): 1649-1661. |
[3] | 于昊辰, 曾思燕, 王庆宾, 戴劲, 卞正富, 陈浮. 多情景模拟下新时代中国耕地保护底线预测[J]. 资源科学, 2021, 43(6): 1222-1233. |
[4] | 罗屹, 苗海民, 黄东, 武拉平, 朱俊峰. 农户仓类设施采纳及其对玉米储存数量和损失的影响[J]. 资源科学, 2020, 42(9): 1777-1787. |
[5] | 高延雷,张正岩,魏素豪,王志刚. 城镇化对中国粮食安全的影响——基于省区面板数据的实证分析[J]. 资源科学, 2019, 41(8): 1461-1474. |
[6] | 董佳静, 赵旸, 王重阳, 肖潇, 张丹, 刘立涛, 刘晓洁, 张亚丽, 伦飞. 1980—2016年北京市食物消费的土地需求[J]. 资源科学, 2019, 41(7): 1350-1358. |
[7] | 何云, 黄翀, 李贺, 刘庆生, 刘高焕, 周振超, 张晨晨. 基于Sentinel-2A影像特征优选的随机森林土地覆盖分类[J]. 资源科学, 2019, 41(5): 992-1001. |
[8] | 邱俊杰, 任倩, 余劲. 农业劳动力老龄化、农业资本投入与土地利用效率——基于鲁豫皖三省固定农户跟踪调查[J]. 资源科学, 2019, 41(11): 1982-1996. |
[9] | 侯鹏, 王灵恩, 刘晓洁, 李云云, 薛莉, 成升魁. 国内外食育研究的理论与实践[J]. 资源科学, 2018, 40(12): 2369-2381. |
[10] | 张灿强, 王莉, 华春林, 金书秦, 刘鹏涛. 中国主要粮食生产的化肥削减潜力及其碳减排效应[J]. 资源科学, 2016, 38(4): 790-797. |
[11] | 刘晓磊, 栾一博, 胡科, 崔雪锋. 中国生猪生产耗水及影响因素分析[J]. 资源科学, 2016, 38(1): 110-118. |
[12] | 蔡荣, 蔡书凯. 保护性耕作技术采用及对作物单产影响的实证分析——基于安徽省水稻种植户的调查数据[J]. , 2012, 34(9): 1705-1711. |
[13] | 雍新琴, 张安录. 基于粮食安全的耕地保护补偿标准探讨[J]. , 2012, 34(4): 749-757. |
[14] | 程新, 高天明, 沈镭. 中南半岛五国矿产资源开发现状及中国的投资取向[J]. , 2011, 33(10): 1847-1854. |
[15] | 李秉龙, 隋艳颖, 夏晓平. 中国畜牧业生产结构的区域差异分析[J]. , 2010, 32(8): 1592-1600. |
|