资源科学 ›› 2021, Vol. 43 ›› Issue (10): 2105-2118.doi: 10.18402/resci.2021.10.14
收稿日期:
2020-12-10
修回日期:
2021-03-08
出版日期:
2021-10-25
发布日期:
2021-12-25
作者简介:
刘丰,男,浙江苍南人,助理研究员,研究方向为人口、资源与环境经济学,经济计量分析。E-mail: liuf22@163.com
基金资助:
Received:
2020-12-10
Revised:
2021-03-08
Online:
2021-10-25
Published:
2021-12-25
摘要:
在即将进入深度老龄化社会的大背景下,中国完成碳排放目标需要重点关注人口年龄结构变化的影响。归纳世界人口年龄结构对碳排放作用的普遍规律,有助于更好地了解人口年龄结构对碳排放的作用机制。鉴于此,本文选取全球有代表性的55个经济体,从生育率和预期寿命两个维度出发,运用面板数据分析方法,实证研究并对比分析年龄结构对各经济体碳排放的差异化影响和作用路径。研究表明:①生育率和预期寿命对碳排放增长存在着非线性作用,生育率下降促进了碳排放的增长,而预期寿命延长对碳排放具有先减后增的作用;②随着老龄化的加剧,预期寿命在人口年龄结构对碳排放作用中的贡献越来越高;③生育率和预期寿命作用于碳排放的主导路径在发展中国家和发达国家之间存在着差异,前者以规模变化路径为主,而后者由效率技术变化路径主导。本文结论丰富了人口年龄结构对碳排放影响机制的研究,也为探索中国老龄化背景下碳减排路径提供政策上的启示。
刘丰, 王维国. 人口年龄结构变动对碳排放的影响——基于生育率和预期寿命的跨国面板数据[J]. 资源科学, 2021, 43(10): 2105-2118.
LIU Feng, WANG Weiguo. The impact of age structure on carbon emissions: Based on a cross-country panel data of fertility rate and life expectancy[J]. Resources Science, 2021, 43(10): 2105-2118.
表1
变量统计性描述
符号 | 变量 | 单位 | 均值 | 标准差 | 最小值 | 最大值 |
---|---|---|---|---|---|---|
CAR | CO2排放量 | 百万t | 365.613 | 963.003 | 0.293 | 10291.930 |
tfr | 总和生育率 | - | 2.626 | 1.504 | 0.977 | 7.313 |
tle | 预期寿命 | 岁 | 70.766 | 8.222 | 36.976 | 84.211 |
ur | 城市化率 | % | 62.263 | 20.727 | 5.135 | 100.000 |
inds | 产业增加值比重 | % | 28.608 | 13.502 | 2.365 | 84.796 |
ftd | 外贸依存度 | - | 61.304 | 82.146 | 0.275 | 2750.919 |
gdppc | 人均GDP | 美元/人 | 17008.760 | 13699.610 | 131.300 | 83851.230 |
pop | 人口规模 | 百万人 | 81.160 | 198.972 | 0.314 | 1409.517 |
kl | 资本劳动比 | - | 140308.700 | 130093.500 | 895.070 | 685852.400 |
l | 单位人口就业率 | - | 0.420 | 0.086 | 0.188 | 0.726 |
ye | 有效人均产出 | 美元/人 | 38897.020 | 27944.880 | 485.805 | 173048.000 |
ci | 碳排放强度 | t/百万美元 | 0.468 | 0.374 | 0.020 | 9.614 |
表4
1960—2016年各经济体人口年龄结构对碳排放效应的分解
经济体 | 生育率 效应/% | 预期寿命 效应/% | 人口年龄结构 总效应/% | 生育率贡 献率/% | 经济体 | 生育率 效应/% | 预期寿命 效应/% | 人口年龄结构 总效应/% | 生育率贡 献率/% |
---|---|---|---|---|---|---|---|---|---|
日本 | 0.054 | 2.726 | 2.780 | 1.952 | 墨西哥 | 2.144 | 2.788 | 4.932 | 43.465 |
瑞士 | 0.235 | 2.263 | 2.499 | 9.418 | 越南 | 1.955 | 2.514 | 4.469 | 43.747 |
意大利 | 0.259 | 2.370 | 2.630 | 9.854 | 马来西亚 | 2.112 | 2.399 | 4.510 | 46.819 |
挪威 | 0.202 | 1.832 | 2.034 | 9.926 | 尼日利亚 | 1.059 | -1.085 | -0.026 | 49.397 |
法国 | 0.304 | 2.307 | 2.611 | 11.628 | 中国 | 2.151 | 2.108 | 4.259 | 50.498 |
阿根廷 | 0.211 | 1.594 | 1.805 | 11.716 | 韩国 | 3.057 | 2.942 | 6.000 | 50.956 |
英国 | 0.268 | 1.753 | 2.021 | 13.273 | 埃及 | 2.511 | 1.974 | 4.485 | 55.984 |
德国 | 0.363 | 1.657 | 2.020 | 17.969 | 泰国 | 2.833 | 2.130 | 4.963 | 57.079 |
欧盟(其他)(a) | 0.354 | 1.603 | 1.956 | 18.091 | 巴基斯坦 | 2.078 | 1.446 | 3.524 | 58.973 |
澳大利亚 | 0.507 | 2.176 | 2.683 | 18.894 | 巴西 | 2.794 | 1.877 | 4.671 | 59.810 |
加拿大 | 0.649 | 1.893 | 2.542 | 25.543 | 菲律宾 | 2.549 | 1.441 | 3.990 | 63.882 |
沙特阿拉伯 | 1.722 | 4.217 | 5.939 | 28.995 | 土耳其 | 3.368 | 1.857 | 5.226 | 64.457 |
美国 | 0.663 | 1.338 | 2.001 | 33.148 | 孟加拉国 | 3.583 | 1.308 | 4.891 | 73.257 |
智利 | 1.479 | 2.636 | 4.115 | 35.943 | 印度尼西亚 | 2.649 | 0.742 | 3.391 | 78.124 |
新加坡 | 1.908 | 2.728 | 4.636 | 41.161 | 南非 | 2.942 | 0.527 | 3.469 | 84.803 |
俄罗斯 | 0.470 | 0.667 | 1.137 | 41.301 | 印度 | 3.153 | -0.150 | 3.003 | 95.448 |
表6
各经济体碳排放作用机制分解
经济体 | 总和生育率-各路径贡献百分比 | 预期寿命年限-各路径贡献百分比 | |||||||
---|---|---|---|---|---|---|---|---|---|
lnpop | lnl | lnye | lnci | lnpop | lnl | lnye | lnci | ||
日本 | 15.540 | -6.858 | 49.609 | 41.710 | 25.625 | 108.443 | -289.930 | 255.862 | |
挪威 | 20.235 | -4.077 | 40.026 | 43.816 | 44.188 | 233.265 | -569.848 | 392.395 | |
意大利 | 20.885 | 0.859 | 43.984 | 34.271 | 26.161 | 118.865 | -321.600 | 276.574 | |
阿根廷 | 25.640 | 2.200 | 32.564 | 39.596 | 22.255 | 34.307 | -61.101 | 104.538 | |
瑞士 | 21.977 | 2.268 | 42.641 | 33.114 | 33.235 | 176.908 | -464.491 | 354.348 | |
英国 | 23.033 | 2.983 | 40.592 | 33.392 | 28.802 | 121.362 | -308.630 | 258.466 | |
加拿大 | 26.007 | 4.399 | 34.117 | 35.478 | 29.584 | 129.796 | -331.399 | 272.019 | |
澳大利亚 | 26.080 | 5.397 | 35.079 | 33.444 | 32.845 | 145.519 | -359.136 | 280.772 | |
法国 | 25.591 | 6.348 | 37.517 | 30.544 | 31.384 | 129.195 | -314.606 | 254.027 | |
欧盟(其他) | 24.449 | 8.674 | 43.338 | 23.539 | 22.378 | 81.794 | -223.685 | 219.513 | |
美国 | 28.161 | 9.037 | 33.627 | 29.174 | 22.954 | 69.330 | -176.509 | 184.225 | |
德国 | 26.771 | 14.371 | 43.620 | 15.238 | 18.981 | 73.423 | -223.158 | 230.754 | |
新加坡 | 35.784 | 16.519 | 21.513 | 26.185 | 23.832 | 73.969 | -185.371 | 187.570 | |
俄罗斯 | 28.243 | 17.109 | 42.785 | 11.863 | 14.600 | 16.223 | -61.166 | 130.343 | |
沙特阿拉伯 | 54.648 | 18.359 | -27.846 | 54.839 | 26.205 | 8.626 | 60.021 | 5.148 | |
智利 | 37.077 | 21.904 | 24.243 | 16.776 | 19.345 | 16.178 | -22.202 | 86.679 | |
越南 | 48.442 | 26.084 | -1.925 | 27.399 | 26.301 | 27.531 | -4.579 | 50.748 | |
中国 | 43.355 | 28.650 | 14.943 | 13.052 | 17.736 | -11.200 | 59.330 | 34.133 | |
马来西亚 | 50.362 | 28.854 | -3.945 | 24.730 | 25.447 | 27.426 | -11.195 | 58.322 | |
墨西哥 | 53.837 | 29.669 | -12.487 | 28.981 | 26.761 | 23.461 | 13.257 | 36.521 | |
韩国 | 43.900 | 33.369 | 18.941 | 3.789 | 17.712 | 14.364 | -29.278 | 97.202 | |
泰国 | 49.634 | 38.770 | 9.566 | 2.031 | 18.350 | 2.953 | 15.407 | 63.289 | |
巴西 | 52.502 | 43.200 | 6.887 | -2.589 | 17.834 | -1.161 | 25.413 | 57.914 | |
菲律宾 | 70.850 | 49.864 | -35.460 | 14.746 | 25.140 | 19.539 | 13.574 | 41.747 | |
印度尼西亚 | 60.570 | 59.738 | 4.080 | -24.389 | 15.110 | -19.841 | 67.741 | 36.990 | |
土耳其 | 65.297 | 64.017 | -3.848 | -25.466 | 16.540 | -12.277 | 53.274 | 42.463 | |
孟加拉国 | 67.769 | 65.060 | -9.386 | -23.444 | 17.025 | -15.511 | 68.430 | 30.056 | |
南非 | 66.598 | 66.980 | -3.955 | -29.623 | 16.824 | -19.139 | 79.331 | 22.983 | |
印度 | 65.529 | 68.817 | 1.097 | -35.444 | 14.083 | -27.223 | 84.874 | 28.265 | |
巴基斯坦 | 85.705 | 73.431 | -48.618 | -10.518 | 19.924 | -12.530 | 81.821 | 10.786 | |
埃及 | 88.355 | 82.611 | -45.184 | -25.782 | 20.015 | -6.841 | 62.890 | 23.936 | |
尼日利亚 | 201.471 | 249.588 | -159.910 | -191.149 | 14.690 | -34.189 | 113.928 | 5.570 |
[1] | 潘文卿, 刘婷, 王丰国. 中国区域产业CO2排放影响因素研究: 不同经济增长阶段的视角[J]. 统计研究, 2017, 34(3):30-44. |
[ Pan W Q, Liu T, Wang F W. A study on factors of regional industrial carbon emission in China: Based on the perspective of different economic growth stages[J]. Statistical Research, 2017, 34(3):30-44. ] | |
[2] | Dodson J C, Dérer P, Cafaro P, et al. Population growth and climate change: Addressing the overlooked threat multiplier[J]. Science of the Total Environment, 2020, DOI: 10.1016/j.scitotenv.2020.141346. |
[3] | 彭璐璐, 李楠, 郑智远, 等. 中国居民消费碳排放影响因素的时空异质性[J]. 中国环境科学, 2021, 41(1):463-472. |
[ Peng L L, Li N, Zheng Z Y, et al. Spatial-temporal heterogeneity of carbon emissions and influencing factors on household consumption of China[J]. China Environmental Science, 2021, 41(1):463-472. ] | |
[4] |
Yu B Y, Wei Y M, Kei G M, et al. Future scenarios for energy consumption and carbon emissions due to demographic transitions in Chinese households[J]. Nature Energy, 2018, 3:109-118.
doi: 10.1038/s41560-017-0053-4 |
[5] |
Zhang Y J, Bian X J, Tan W P, et al. The indirect energy consumption and CO2 emission caused by household consumption in China: An analysis based on the input-output method[J]. Journal of Cleaner Production, 2017, 163(10):69-83.
doi: 10.1016/j.jclepro.2015.08.044 |
[6] | Belaid F, Youssef A B, Omrani N. Investigating the factors shaping residential energy consumption patterns in France: Evidence form quantile regression[J]. The European Journal of Comparative Economics, 2020, 17(1):127-151. |
[7] | Estiri H, Zagheni E. Age matters: Ageing and household energy demand in the United States[J]. Energy Research & Social Science, 2019, 55:62-70. |
[8] | 沈可, 史倩. 人口结构与家庭规模对生活能源消费的影响: 基于中国省级面板数据的实证研究[J]. 人口研究, 2018, 42(6):100-110. |
[ Shen K, Shi Q. The impacts of population structure and household size on residential energy consumption: Evidences based on provincial-level panel data[J]. Population Research, 2018, 42(6):100-110. ] | |
[9] | 史琴琴, 鲁丰先, 陈海, 等. 中原经济区城镇居民消费间接碳排放时空格局及其影响因素[J]. 资源科学, 2018, 40(6):1297-1306. |
[ Shi Q Q, Lu F X, Chen H, et al. Temporal-spatial patterns and factors affecting indirect carbon emissions from urban consumption in the central plains economic region[J]. Resources Science, 2018, 40(6):1297-1306. ] | |
[10] |
Almeida A N, Souza L R S. Analysis of the consumption patterns in families with and without elderly members between 1987 and 2009 in the metropolitan regions of Brazil[J]. Journal of Population Ageing, 2019, 12(11):327-357.
doi: 10.1007/s12062-018-9233-7 |
[11] | Kim J, Jang M, Shin D. Examining the role of population age structure upon residential electricity demand: A case from Korea[J]. Sustainability, 2019, DOI: 10.3390/su11143914. |
[12] |
Ota T, Kakinaka M, Kotani K. Demographic effects on residential electricity and city gas consumption in the aging society of Japan[J]. Energy Policy, 2018, 115:503-513.
doi: 10.1016/j.enpol.2018.01.016 |
[13] |
Wei T Y, Zhu Q, Glomsrød S. How will demographic characteristics of the labor force matter for the global economy and carbon dioxide emissions?[J]. Ecological Economics, 2018, 147:197-207.
doi: 10.1016/j.ecolecon.2018.01.017 |
[14] | 彭希哲, 朱勤. 我国人口态势与消费模式对碳排放的影响分析[J]. 人口研究, 2010, 34(1):48-58. |
[ Peng X Z, Zhu Q. Impacts of population dynamics and consumption pattern on carbon emission in China[J]. Population Research, 2010, 34(1):48-58.] | |
[15] |
Dalton M, O’Neill B, Prskawetz A, et al. Population aging and future carbon emissions in the Unites States[J]. Energy Economics, 2008, 30(2):642-675.
doi: 10.1016/j.eneco.2006.07.002 |
[16] | 李楠, 邵凯, 王前进. 中国人口结构对碳排放量影响研究[J]. 中国人口·资源与环境, 2011, 21(7):19-23. |
[ Li N, Shao K, Wang Q J. Study on impact from population structure on carbon emissions in China[J]. China Population, Resources and Environment, 2011, 21(7):19-23. ] | |
[17] | Kim J, Lim H, Jo H H. Do aging and low fertility reduce carbon emissions in Korea? Evidence from IPAT augmented EKC analysis[J]. International Journal of Environmental Research and Public Health, 2020, DOI: 10.3390/ijerph17082972. |
[18] |
Li S J, Zhou C S. What are the impacts of demographic structure on CO2 emissions? A regional analysis in China via heterogeneous panel estimates[J]. Science of the Total Environment, 2019, 650:2021-2031.
doi: 10.1016/j.scitotenv.2018.09.304 |
[19] | Okon E O. Population structure and environmental degradation: Implication for EKC hypojournal[J]. Bussecon Review of Social Sciences, 2019, 1(2):18-27. |
[20] | Cole M, Neumayer E. Examining the impact of demographic factors on air pollution[J]. Population and Environment, 2004, DOI: 10.1023/B:POEN.0000039950.85422. |
[21] |
Zhang C G, Tan Z. The relationships between population factors and China’s carbon emissions: Does population aging matter?[J]. Renewable and Sustainable Energy Reviews, 2016, 65:1018-1025.
doi: 10.1016/j.rser.2016.06.083 |
[22] |
Yu Y, Deng Y R, Chen F F. Impact of population aging and industrial structure on CO2 emissions and emissions trend prediction in China[J]. Atmospheric Pollution Research, 2018, 9(5):446-454.
doi: 10.1016/j.apr.2017.11.008 |
[23] | Saka A. An investigation of the role of population age structure and carbon dioxide emissions in Africa[J]. Journal of Economics, Management and Trade, 2017, DOI: 10.9734/JEMT/2017/27663. |
[24] |
Fan Y, Liu L C, Wu G, et al. Analyzing impact factors of CO2 emissions using the STIRPAT model[J]. Environmental Impact Assessment Review, 2006, 26(4):377-395.
doi: 10.1016/j.eiar.2005.11.007 |
[25] |
Liddle B, Lung S. Age-structure, urbanization and climate change in developed countries: Revisiting STIRPAT for disaggregated population and consumption related environmental impacts[J]. Population and Environment, 2010, 31(5):317-343.
doi: 10.1007/s11111-010-0101-5 |
[26] | 王芳, 周兴. 人口结构、城镇化与碳排放: 基于跨国面板数据的实证研究[J]. 中国人口科学, 2012, (2):47-56. |
[ Wang F, Zhou X. Population structure, urbanization and CO2 emission: An empirical study base on cross-country panel data[J]. Chinese Journal of Population Science, 2012, (2):47-56. ] | |
[27] | Yang T, Wang Q. The nonlinear effect of population aging on carbon emission: Empirical analysis of ten selected provinces in China[J]. Science of the Total Environment, 2020, DOI: 10.1016/j.scitotenv.2020.140057. |
[28] | 吴昊, 车国庆. 中国人口年龄结构如何影响了地区碳排放? 基于动态空间STIRPAT模型的分析[J]. 吉林大学社会科学学报, 2018, 58(3):67-77. |
[ Wu H, Che G Q. How does China’s population age structure affect regional carbon emissions? An analysis based on dynamic spatial STIRPAT model[J]. Jilin University Journal Social Sciences Edition, 2018, 58(3):67-77. ] | |
[29] | 田成诗, 郝艳, 李文静, 等. 中国人口年龄结构对碳排放的影响[J]. 资源科学, 2015, 37(12):2309-2318. |
[ Tian C S, Hao Y, Li W J, et al. Population age structure effects on carbon emission in China[J]. Resources Science, 2015, 37(12):2309-2318. ] | |
[30] |
Yang Y, Zhou Y N, Poon J, et al. China’s carbon dioxide emission and driving factors: A spatial analysis[J]. Journal of Cleaner Production, 2019, 211:640-651.
doi: 10.1016/j.jclepro.2018.11.185 |
[31] | Sun L C, Cao X X, Alharthi M D, et al. Carbon emission transfer strategies in supply chain with lag time of emission reduction technologies and low-carbon preference of consumers[J]. Journal of Cleaner Production, 2020, DOI: 10.1016/j.jclepro.2020.121664. |
[32] |
Vollset S E, Goren E, Yuan C W, et al. Fertility, mortality, migration, and population scenarios for 195 countries and territories from 2017 to 2100: A forecasting analysis for the global burden of disease study[J]. The Lancet, 2020, 396(10258):1285-1306.
doi: 10.1016/S0140-6736(20)30677-2 |
[33] |
Acemoglu D, Restrepo P. The race between machine and man: Implications of technology for growth, factor shares and employment[J]. American Economic Review, 2018, 108(6):1488-1542.
doi: 10.1257/aer.20160696 |
[34] |
Acemoglu D, Restrepo P. The wrong kind of AI? Artificial intelligence and the future of labour demand[J]. Cambridge Journal of Regions Economy and Society, 2020, 13(1):25-35.
doi: 10.1093/cjres/rsz022 |
[35] | 王维国, 刘丰, 胡春龙. 生育政策、人口年龄结构优化与经济增长[J]. 经济研究, 2019, 54(1):116-131. |
[ Wang W G, Liu F, Hu C L. Fertility policy, population age structure optimization and economic growth[J]. Economic Research Journal, 2019, 54(1):116-131. ] | |
[36] | 徐博, 杨来科, 钱志权. 全球价值链分工地位对于碳排放水平的影响[J]. 资源科学, 2020, 42(3):527-535. |
[ Xu B, Yang L K, Qian Z Q. The impact of global value chain position on carbon emissions[J]. Resources Science, 2020, 42(3):527-535. ] | |
[37] | 佘群芝, 吴肖丽, 潘安. 气候资金对受援国碳排放的影响[J]. 资源科学, 2020, 42(6):1015-1026. |
[ She Q Z, Wu X L, Pan A. Effects of climate finance on carbon emissions in recipient countries[J]. Resources Science, 2020, 42(6):1015-1026. ] | |
[38] |
Feenstra R C, Inklaar R, Timmer M P. The next generation of the penn world table[J]. American Economic Review, 2015, 105(10):3150-3182.
doi: 10.1257/aer.20130954 |
[39] |
Choi S, Taiji R, Monden C, et al. Cohort trends in the association between sibship size and educational attainment in 26 low-fertility countries[J]. Demography, 2020, 57(3):1035-1062.
doi: 10.1007/s13524-020-00885-5 |
[40] |
Ketenci N, Murthy V N R. Some determinants of life expectancy in the United States: Results from cointegration tests under structural breaks[J]. Journal of Economics and Finance, 2018, 42(3):508-525.
doi: 10.1007/s12197-017-9401-2 |
[1] | 李颖, 武学, 孙成双, 耿子洁, 张全红. 基于低碳发展的北京城市生活垃圾处理模式优化[J]. 资源科学, 2021, 43(8): 1574-1588. |
[2] | 张炎治, 冯颖, 张磊. 中国碳排放增长的多层递进动因——基于SDA和SPD的实证研究[J]. 资源科学, 2021, 43(6): 1153-1165. |
[3] | 李晨, 李昊玉, 孔海峥, 冯伟. 中国渔业生产系统隐含碳排放结构特征及驱动因素分解[J]. 资源科学, 2021, 43(6): 1166-1177. |
[4] | 于智涵, 方丹, 杨谨. 资源型经济转型试验区政策对碳排放的影响评估——以山西省为例[J]. 资源科学, 2021, 43(6): 1178-1192. |
[5] | 洪竞科, 李沅潮, 蔡伟光. 多情景视角下的中国碳达峰路径模拟——基于RICE-LEAP模型[J]. 资源科学, 2021, 43(4): 639-651. |
[6] | 刘宏笪, 张济建, 张茜. 全球供应链视角下的中国碳排放责任与形象[J]. 资源科学, 2021, 43(4): 652-668. |
[7] | 周迪, 罗东权. 绿色税收视角下产业结构变迁对中国碳排放的影响[J]. 资源科学, 2021, 43(4): 693-709. |
[8] | 韩梦瑶, 刘卫东, 谢漪甜, 姜宛贝. 中国省域碳排放的区域差异及脱钩趋势演变[J]. 资源科学, 2021, 43(4): 710-721. |
[9] | 姜宛贝, 刘卫东. 中国经济空间格局演变及其CO2排放效应[J]. 资源科学, 2021, 43(4): 722-732. |
[10] | 屈秋实, 王礼茂, 王博, 向宁. 中国有色金属产业链碳排放及碳减排潜力省际差异[J]. 资源科学, 2021, 43(4): 756-763. |
[11] | 张优, 程明今, 刘雪薇. 中国煤炭铁路运输生命周期温室气体排放研究[J]. 资源科学, 2021, 43(3): 601-611. |
[12] | 李晨, 汪琳琳, 邵桂兰. 水产品贸易对渔业碳排放强度的影响——基于中介模型与门槛模型的检验[J]. 资源科学, 2021, 43(10): 2130-2145. |
[13] | 熊航, 静峥, 展进涛. 不同环境规制政策对中国规模以上工业企业技术创新的影响[J]. 资源科学, 2020, 42(7): 1348-1360. |
[14] | 佘群芝, 吴肖丽, 潘安. 气候资金对受援国碳排放的影响[J]. 资源科学, 2020, 42(6): 1015-1026. |
[15] | 余娇, 赵荣钦, 肖连刚, 张林静, 王帅, 揣小伟, 韩雨承, 焦士兴. 基于“水—能—碳”关联的城市污水处理系统碳排放研究[J]. 资源科学, 2020, 42(6): 1052-1062. |
|