资源科学 ›› 2021, Vol. 43 ›› Issue (6): 1248-1259.doi: 10.18402/resci.2021.06.15
收稿日期:
2020-08-27
修回日期:
2020-12-01
出版日期:
2021-06-25
发布日期:
2021-08-25
作者简介:
陈婷,女,江苏盐城人,硕士研究生,研究方向为流域水文。E-mail: Chenting123@whu.edu.cn
基金资助:
CHEN Ting1(), XIA Jun1,2, ZOU Lei2, YAN Qiang3
Received:
2020-08-27
Revised:
2020-12-01
Online:
2021-06-25
Published:
2021-08-25
摘要:
了解植被覆盖的动态变化及其对气候变化的响应,对区域生态环境的保护和建设具有重要意义。基于SPOT/VEGETATION NDVI数据,本文采用Sen+Mann-Kendall、波动性分析和相关性分析等多元统计方法,探究了2001—2018年间白洋淀流域全区和不同植被类型区NDVI时空演变特征及其对气候变化响应的差异性。结果表明:①2001—2018年白洋淀流域NDVI以0.0031/a的速率增长,显著增长(P<0.05)的区域面积比例为53.79%;针叶林、阔叶林、灌丛、草原、草丛和草甸NDVI呈显著增长(P<0.05),沼泽和栽培植物NDVI增长趋势不显著。②全流域NDVI总体波动性较小,67.81%的区域NDVI为显著低波动性(P<0.05);除草原和草甸外,其余植被类型NDVI为显著低波动性的面积比例均超过50%。③除沼泽和栽培植物外,其余各植被类型NDVI对降水的响应较为一致,呈现显著正相关(P<0.05);气温在流域尺度和不同植被类型区内对NDVI的影响均不显著。本文结果对于理解气候变化对植被生长的作用机理和开展区域生态环境保护及治理有一定意义。
陈婷, 夏军, 邹磊, 闫强. 白洋淀流域NDVI时空演变及其对气候变化的响应[J]. 资源科学, 2021, 43(6): 1248-1259.
CHEN Ting, XIA Jun, ZOU Lei, YAN Qiang. Spatiotemporal variations of NDVI of different vegetation types in the Baiyangdian Basin under the background of climate change[J]. Resources Science, 2021, 43(6): 1248-1259.
表2
2001—2018年白洋淀流域NDVI不同变化等级面积百分比
变化趋势 | 植被类型 | 全区 | |||||||
---|---|---|---|---|---|---|---|---|---|
针叶林 | 阔叶林 | 灌丛 | 草原 | 草丛 | 草甸 | 沼泽 | 栽培植物 | ||
基本无变化 | 0.00 | 0.96 | 0.94 | 0.82 | 1.38 | 0.43 | 5.71 | 4.61 | 3.21 |
极显著减少 | 0.00 | 3.09 | 0.27 | 2.27 | 0.25 | 1.22 | 5.40 | 4.82 | 3.20 |
显著减少 | 0.00 | 2.13 | 0.14 | 0.62 | 0.34 | 0.43 | 7.30 | 4.60 | 3.00 |
不显著减少 | 0.00 | 6.76 | 2.53 | 1.65 | 3.76 | 1.39 | 26.67 | 20.51 | 13.82 |
不显著增加 | 9.25 | 11.60 | 11.92 | 16.29 | 20.92 | 11.90 | 25.71 | 27.88 | 22.99 |
显著增加 | 5.78 | 6.80 | 9.39 | 14.23 | 12.04 | 9.82 | 10.79 | 11.56 | 11.00 |
极显著增加 | 84.97 | 68.66 | 74.81 | 64.12 | 61.31 | 74.80 | 18.41 | 26.02 | 42.79 |
表3
2001—2018年白洋淀流域NDVI不同波动等级面积百分比
波动性 | 植被类型 | 全区 | |||||||
---|---|---|---|---|---|---|---|---|---|
针叶林 | 阔叶林 | 灌丛 | 草原 | 草丛 | 草甸 | 沼泽 | 栽培植物 | ||
极低 | 16.18 | 23.74 | 21.71 | 6.76 | 15.60 | 6.27 | 44.08 | 41.52 | 32.19 |
低 | 35.84 | 47.27 | 40.60 | 19.26 | 43.58 | 27.35 | 31.25 | 31.97 | 35.62 |
中 | 33.82 | 22.68 | 28.24 | 41.39 | 34.32 | 31.45 | 13.82 | 18.63 | 23.37 |
高 | 12.72 | 6.10 | 9.38 | 31.56 | 6.43 | 34.49 | 9.21 | 7.87 | 8.81 |
极高 | 1.45 | 0.21 | 0.07 | 1.02 | 0.07 | 0.44 | 1.64 | 0.02 | 0.01 |
表4
2001—2018年白洋淀流域NDVI不同波动趋势等级面积百分比
波动趋势 | 植被类型 | 全区 | |||||||
---|---|---|---|---|---|---|---|---|---|
针叶林 | 阔叶林 | 灌丛 | 草原 | 草丛 | 草甸 | 沼泽 | 栽培植物 | ||
基本无变化 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.02 |
极显著减少 | 8.67 | 7.60 | 2.47 | 1.65 | 2.07 | 3.21 | 0.63 | 0.99 | 1.83 |
显著减少 | 12.43 | 8.56 | 4.24 | 7.22 | 4.26 | 6.17 | 6.35 | 3.53 | 4.19 |
不显著减少 | 51.73 | 45.91 | 45.74 | 52.37 | 49.25 | 52.39 | 38.10 | 46.56 | 46.95 |
不显著增加 | 27.17 | 34.47 | 44.00 | 36.49 | 41.06 | 35.36 | 46.67 | 45.49 | 43.58 |
显著增加 | 0.00 | 2.30 | 2.58 | 1.86 | 2.79 | 1.91 | 5.71 | 2.74 | 2.69 |
极显著增加 | 0.00 | 1.17 | 0.97 | 0.41 | 0.57 | 0.96 | 2.54 | 0.67 | 0.75 |
表5
2001—2018年白洋淀流域NDVI与降水、气温不同偏相关性等级面积百分比
气候因子 | 相关性 | 植被类型 | 全区 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
针叶林 | 阔叶林 | 灌丛 | 草原 | 草丛 | 草甸 | 沼泽 | 栽培植物 | |||
降水 | 强显著负相关 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.02 |
显著负相关 | 0.00 | 0.96 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.51 | 0.35 | |
不显著负相关 | 0.00 | 9.14 | 1.61 | 3.51 | 2.54 | 2.35 | 15.56 | 19.27 | 12.79 | |
不显著正相关 | 9.54 | 21.95 | 29.83 | 35.26 | 40.77 | 26.32 | 77.78 | 50.83 | 43.89 | |
显著正相关 | 28.61 | 32.93 | 36.89 | 31.75 | 29.92 | 31.02 | 5.71 | 17.77 | 23.67 | |
强显著正相关 | 61.85 | 34.97 | 31.65 | 29.48 | 26.77 | 40.31 | 0.95 | 11.59 | 19.27 | |
气温 | 强显著负相关 | 0.00 | 0.33 | 0.46 | 2.47 | 0.45 | 0.43 | 0.00 | 0.41 | 0.43 |
显著负相关 | 0.29 | 0.83 | 1.71 | 2.47 | 1.28 | 1.13 | 0.00 | 1.70 | 1.57 | |
不显著负相关 | 24.86 | 23.66 | 36.46 | 42.68 | 50.89 | 31.19 | 38.10 | 49.09 | 45.40 | |
不显著正相关 | 59.83 | 66.99 | 55.62 | 51.75 | 45.11 | 59.51 | 60.63 | 45.27 | 48.56 | |
显著正相关 | 10.12 | 5.72 | 3.71 | 0.62 | 1.69 | 5.47 | 0.63 | 2.36 | 2.72 | |
强显著正相关 | 4.91 | 2.46 | 2.04 | 0.00 | 0.57 | 2.26 | 0.63 | 1.18 | 1.32 |
[1] |
Akinyemi F O, Kgomo M O. Vegetation dynamics in African drylands: An assessment based on the Vegetation Degradation Index in an agro-pastoral region of Botswana[J]. Regional Environmental Change, 2019, 19(7):2027-2039.
doi: 10.1007/s10113-019-01541-4 |
[2] |
Cheng L L, Zhang Y, Sun H Y. Vegetation cover change and relative contributions of associated driving factors in the ecological conservation and development zone of Beijing, China[J]. Polish Journal of Environmental Studies, 2020, 29(1):53-65.
doi: 10.15244/pjoes/102368 |
[3] | 阿荣, 毕其格, 董振华. 基于MODIS/NDVI的锡林郭勒草原植被变化及其归因[J]. 资源科学, 2019, 41(7):1374-1386. |
[ A R, Bi Q G, Dong Z H. Change of grassland vegetation and driving factors based on MODIS / NDVI in Xilingol, China[J]. Resources Science, 2019, 41(7):1374-1386.] | |
[4] | Fang W, Huang S Z, Huang Q, et al. Probabilistic assessment of remote sensing-based terrestrial vegetation vulnerability to drought stress of the Loess Plateau in China[J]. Remote Sensing of Environment, 2019, DOI: 10.1016/j.rse.2019.111290 |
[5] |
张志强, 刘欢, 左其亭, 等. 2000-2019年黄河流域植被覆盖度时空变化[J]. 资源科学, 2021, 43(4):849-858.
doi: 10.18402/resci.2021.04.18 |
[ Zhang Z Q, Liu H, Zuo Q T, et al. Spatiotemporal change of fractional vegetation cover in the Yellow River Basin during 2000-2019[J]. Resources Science, 2021, 43(4):849-858.] | |
[6] | 易浪, 任志远, 张翀, 等. 黄土高原植被覆盖变化与气候和人类活动的关系[J]. 资源科学, 2014, 36(1):166-174. |
[ Yi L, Ren Z Y, Zhang C, et al. Vegetation cover, climate and human activities on the Loess Plateau[J]. Resources Science, 2014, 36(1):166-174.] | |
[7] | Sun W Y, Song X Y, Mu X M, et al. Spatiotemporal vegetation cover variations associated with climate change and ecological restoration in the Loess Plateau[J]. Agricultural and Forest Meteorology, 2015, 209:87-99. |
[8] | 苟娇娇, 王飞, 金凯, 等. 黄土高原植被恢复引发区域气温下降[J]. 生态学报, 2018, 38(11):3970-3978. |
[ Gou J J, Wang F, Jin K, et al. Cooling effect induced by vegetation restoration on the Loess Plateau[J]. Acta Ecologica Sinica, 2018, 38(11):3970-3978.] | |
[9] |
赵卓文, 张连蓬, 李行, 等. 基于MOD13Q1数据的宁夏生长季植被动态监测[J]. 地理科学进展, 2017, 36(6):741-752.
doi: 10.18306/dlkxjz.2017.06.009 |
[ Zhao Z W, Zhang L P, Li X, et al. Monitoring vegetation dynamics during the growing season in Ningxia based on MOD13Q1 data[J]. Progress in Geography, 2017, 36(6):741-752.] | |
[10] | 袁倩颖, 马彩虹, 文琦, 等. 六盘山贫困区生长季植被覆盖变化及其对水热条件的响应[J]. 国土资源遥感, 2021, 33(2):220-227. |
[ Yuan Q Y, Ma C H, Wen Q, et al. Vegetation cover change and its response to water and heat conditions in the growing season in Liupanshan poverty-stricken area[J]. Remote Sensing for Land and Resources, 2021, 33(2):220-227.] | |
[11] |
Zhou L M, Tucker C J, Kaufmann R K, et al. Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999[J]. Journal of Geophysical Research Atmospheres, 2001, 106:20069-20084.
doi: 10.1029/2000JD000115 |
[12] |
de Jong R, de Bruin S, de Wit A, et al. Analysis of monotonic greening and browning trends from global NDVI time-series[J]. Remote Sensing of Environment, 2011, 115(2):692-702.
doi: 10.1016/j.rse.2010.10.011 |
[13] |
Piao S L, Nan H J, Huntingford C, et al. Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity[J]. Nature Communications, 2014, 5(1):5018.
doi: 10.1038/ncomms6018 |
[14] | 陆晴, 刘根林, 闫冰, 等. 气候变暖背景下中亚地区极端降水事件变化及其对植被覆盖的影响[J]. 水土保持研究, 2021, 28(4):226-235. |
[ Lu Q, Liu G L, Yan B, et al. Variation of extreme precipitation events and their impacts on vegetation coverage in central Asia under climate warming[J]. Research of Soil and Water Conservation, 2021, 28(4):226-235.]. | |
[15] |
孙锐, 陈少辉, 苏红波. 2000-2016年黄土高原不同土地覆盖类型植被NDVI时空变化[J]. 地理科学进展, 2019, 38(8):1248-1258.
doi: 10.18306/dlkxjz.2019.08.013 |
[ Sun R, Chen S H, Su H B. Spatiotemporal variations of NDVI of different land cover types on the Loess Plateau from 2000 to 2016[J]. Progress in Geography, 2019, 38(8):1248-1258.] | |
[16] |
Cheng L L, Zhang Y, Sun H Y. Vegetation cover change and relative contributions of associated driving factors in the Ecological Conservation and Development Zone of Beijing, China[J]. Polish Journal of Environmental Studies, 2020, 29(1):53-65.
doi: 10.15244/pjoes/102368 |
[17] | 毛转梅, 陈劲松, 彭尔瑞, 等. 甘肃省植被覆盖时空变化趋势研究[J]. 江西农业学报, 2020, 32(3):125-130. |
[ Mao Z M, Chen J S, Peng E R, et al. Study on spatial and temporal variation trend of vegetation cover in Gansu Province[J]. Acta Agriculturae Jiangxi, 2020, 32(3):125-130.] | |
[18] |
金凯, 王飞, 韩剑桥, 等. 1982-2015年中国气候变化和人类活动对植被NDVI变化的影响[J]. 地理学报, 2020, 75(5):961-974.
doi: 10.11821/dlxb202005006 |
[ Jin K, Wang F, Han J Q, et al. Contribution of climatic change and human activities to vegetation NDVI change over China during 1982-2015[J]. Acta Geographica Sinica, 2020, 75(5):961-974.] | |
[19] | 万红莲, 王静. 多尺度下宝鸡地区干旱动态格局演变及其与植被覆盖的关系[J]. 生态学报, 2018, 38(19):6941-6952. |
[ Wan H L, Wang J. Study of dynamic pattern evolution of drought and its correlation with vegetation cover in Baoji area on multi-scale[J]. Acta Ecologica Sinica, 2018, 38(19):6941-6952.] | |
[20] | 张辰华, 李书恒, 白红英, 等. 太白山地区7月NDVI多尺度周期变化及其对气候因子的响应[J]. 资源科学, 2019, 41(11):2131-2143. |
[ Zhang C H, Li S H, Bai H Y, et al. Multi-scale periodic variation of NDVI in July and its response to climatic factors in the Taibai Mountain area[J]. Resources Science, 2019, 41(11):2131-2143.] | |
[21] |
Liu Z Z, Wang H, Li N, et al. Spatial and temporal characteristics and driving forces of vegetation changes in the Huaihe River Basin from 2003 to 2018[J]. Sustainability, 2020, 12(6):2198-2198.
doi: 10.3390/su12062198 |
[22] | 何航, 张勃, 侯启, 等. 1982-2015年中国北方归一化植被指数(NDVI)变化特征及对气候变化的响应[J]. 生态与农村环境学报, 2020, 36(1):70-80. |
[ He H, Zhang B, Hou Q, et al. Variation characteristic of NDVI and its response to climate change in Northern China from 1982 to 2015[J]. Journal of Ecology and Rural Environment, 2020, 36(1):70-80.] | |
[23] |
高江波, 焦珂伟, 吴绍洪. 1982-2013年中国植被NDVI空间异质性的气候影响分析[J]. 地理学报, 2019, 74(3):534-543.
doi: 10.11821/dlxb201903010 |
[ Gao J B, Jiao K W, Wu S H. Revealing the climatic impacts on spatial heterogeneity of NDVI in China during 1982-2013[J]. Acta Geographica Sinica, 2019, 74(3):534-543.] | |
[24] | 王静, 万红莲, 姚顺波. 生长季川陕不同地带植被覆盖对气候变化的时空响应[J]. 生态学报, 2019, 39(14):5218-5231. |
[ Wang J, Wan H L, Yao S B. Spatial and temporal response of vegetation cover to climate change in different zones of Sichuan-Shaanxi area during growing season[J]. Acta Ecologica Sinica, 2019, 39(14):5218-5231.] | |
[25] |
Pang G J, Wang X J, Yang M X. Using the NDVI to identify variations in, and responses of, vegetation to climate change on the Tibetan Plateau from 1982 to 2012[J]. Quaternary International, 2017, 444:87-96.
doi: 10.1016/j.quaint.2016.08.038 |
[26] | 刘家福, 马帅, 李帅, 等. 1982-2016年东北黑土区植被NDVI动态及其对气候变化的响应[J]. 生态学报, 2018, 38(21):7647-7657. |
[ Liu J F, Ma S, Li S, et al. Changes in vegetation NDVI from 1982 to 2016 and its responses to climate change in the black-soil area of Northeast China[J]. Acta Ecologica Sinica, 2018, 38(21):7647-7657.] | |
[27] | 刘静, 温仲明, 刚成诚. 黄土高原不同植被覆被类型NDVI对气候变化的响应[J]. 生态学报, 2020, 40(2):678-691. |
[ Liu J, Wen Z M, Gang C C. Normalized difference vegetation index of different vegetation cover types and its responses to climate change in the Loess Plateau[J]. Acta Ecologica Sinica, 2020, 40(2):678-691.] | |
[28] |
高黎明, 张乐乐. 青海湖流域植被盖度时空变化研究[J]. 地球信息科学学报, 2019, 21(9):1318-1329.
doi: 10.12082/dqxxkx.2019.180696 |
[ Gao L M, Zhang L L. Spatiotemporal dynamics of the vegetation coverage in Qinghai Lake Basin[J]. Journal of Geo-Information Science, 2019, 21(9):1318-1329.] | |
[29] |
李茂华, 都金康, 李皖彤, 等. 1982-2015年全球植被变化及其与温度和降水的关系[J]. 地理科学, 2020, 40(5):823-832.
doi: 10.13249/j.cnki.sgs.2020.05.017 |
[ Li M H, Du J K, Li W T, et al. Global vegetation change and its relationship with precipitation and temperature based on GLASS-LAI in 1982-2015[J]. Scientia Geographica Sinica, 2020, 40(5):823-832.] | |
[30] | 杨苗, 龚家国, 赵勇, 等. 白洋淀区域景观格局动态变化及趋势分析[J]. 生态学报, 2020, 40(20):7165-7174. |
[ Yang M, Gong J G, Zhao Y, et al. Analysis of dynamic changes and trends in the landscape pattern of the Baiyangdian Region[J]. Acta Ecologica Sinica, 2020, 40(20):1-10.] | |
[31] | 温静, 黄大庄. 白洋淀流域景观结构和格局时空变化规律及其与地形因子关系[J]. 河北农业大学学报, 2020, 43(3):86-95. |
[ Wen J, Huang D Z. Spatio-temporal variation rules of landscape structure and pattern and their relationship with topographic factors in Baiyangdian Basin[J]. Journal of Hebei Agricultural Universityi, 2020, 43(3):86-95.] | |
[32] | 徐新良. 中国月度植被指数(NDVI)空间分布数据集[DB/OL]. ( 2018-06-06) [2020-7-20]. https://www.resdc.cn/data.aspx?DATAID=257. |
[ Xu X L. Spatial Distribution Data Set of China Monthly Vegetation Index (NDVI)[DB/OL]. ( 2018-06-06) [2020-07-20]. https://www.resdc.cn/data.aspx?DATAID=257.] | |
[33] | 刘红兵. 近30年中国北方13省植被生长季变化分析[D]. 兰州:西北师范大学, 2016. |
[ Liu H B. Analysis of Vegetation Growing Season Changes in 13 Provinces of Northern China in Recent 30 Years[D]. Lanzhou: Northwest Normal University, 2016.] | |
[34] |
Cao R, Jiang W G, Yuan L H, et al. Inter-annual variations in vegetation and their response to climatic factors in the upper catchments of the Yellow River from 2000 to 2010[J]. Journal of Geographical Sciences, 2014, 24(6):963-979.
doi: 10.1007/s11442-014-1131-1 |
[35] |
Fuller D O, Wang Y. Recent trends in satellite vegetation index observations indicate decreasing vegetation biomass in the Southeastern Saline Everglades Wetlands[J]. Wetlands, 2014, 34:67-77.
doi: 10.1007/s13157-013-0483-0 |
[36] |
刘宪锋, 潘耀忠, 朱秀芳, 等. 2000-2014年秦巴山区植被覆盖时空变化特征及其归因[J]. 地理学报, 2015, 70(5):705-716.
doi: 10.11821/dlxb201505003 |
[ Liu X F, Pan Y Z, Zhu X F, et al. Spatiotemporal variation of vegetation coverage in Qinling-Daba Mountains in relation to environment factors[J]. Acta Geographica Sinica, 2015, 70(5):705-716.] | |
[37] |
Li S S, Yang S N, Liu X F, et al. NDVI-Based analysis on the influence of climate change and human activities on vegetation restoration in the Shaanxi-Gansu-Ningxia Region, central China[J]. Remote Sensing, 2015, 7(9):11163-11182.
doi: 10.3390/rs70911163 |
[38] | 蒋丽伟, 张家琦, 赵一臣, 等. 北京山区典型林分生长季叶面积指数动态变化[J]. 林业资源管理, 2019, (2):132-136. |
[ Jiang L W, Zhang J Q, Zhao Y C, et al. Dynamic change of leaf area index in the growing season of typical forests in Beijing mountainous area[J]. Forest Resources Management, 2019, (2):132-136.] | |
[39] | 尹军. 流域干旱还原理论与方法研究: 以白洋淀流域为例[D]. 北京: 中国水利水电科学研究院, 2017. |
[ Yin J. Research Drought Reduction Theory and Method in Basin: With Baiyangdian River Basin as the Case Study[D]. Beijing: China Institute of Water Resources and Hydropower Research, 2017.] | |
[40] | Kang S C, Eltahir E A B. North China Plain threatened by deadly heatwaves due to climate change and irrigation[J]. Nature Communications, 2018, DOI: 10.1038/s41467-018-05252-y. |
[41] | 杨薇, 孙立鑫, 王烜, 等. 生态补水驱动下白洋淀生态系统服务演变趋势[J]. 农业环境科学学报, 2020, 39(5):1077-1084. |
[ Yang W, Sun L X, Wang X, et al. Changes in ecosystem services in Baiyangdian Lake driven by environmental flow releases[J]. Journal of Agro-Environment Science, 2020, 39(5):1077-1084.] | |
[42] | 赵鹏, 陈桃, 王茜, 等. 气候变化和人类活动对新疆草地生态系统NPP影响的定量分析[J]. 中国科学院大学学报, 2020, 37(1):51-62. |
[ Zhao P, Chen T, Wang Q, et al. Quantitative analysis of the impact of climate change and human activities on grassland ecosystem NPP in Xinjiang[J]. Journal of University of Chinese Academy of Sciences, 2020, 37(1):51-62.] |
[1] | 洪竞科, 李沅潮, 蔡伟光. 多情景视角下的中国碳达峰路径模拟——基于RICE-LEAP模型[J]. 资源科学, 2021, 43(4): 639-651. |
[2] | 张志强, 刘欢, 左其亭, 于锦涛, 李阳. 2000—2019年黄河流域植被覆盖度时空变化[J]. 资源科学, 2021, 43(4): 849-858. |
[3] | 张优, 程明今, 刘雪薇. 中国煤炭铁路运输生命周期温室气体排放研究[J]. 资源科学, 2021, 43(3): 601-611. |
[4] | 方琰, DanielScott, RobertSteiger, 吴必虎, 蒋依依. 气候变化背景下人工造雪技术提升对中国滑雪季节长度的影响[J]. 资源科学, 2020, 42(6): 1210-1222. |
[5] | 郭梦瑶, 佘敦先, 张利平, 汤柔馨, 赵鹏雁. 渭河流域潜在蒸散量变化的气候归因[J]. 资源科学, 2020, 42(5): 907-919. |
[6] | 王冠, 陈涵如, 王平, 王田野, 于静洁, 刘昌明, 杨林生. 俄罗斯环北极地区地表径流变化及其原因[J]. 资源科学, 2020, 42(2): 346-357. |
[7] | 黄其威, 刘诗奇, 王平, 王田野, 于静洁, 陈晓龙, 杨林生. 1936—2018年环北极典型流域气温与降水时空变化[J]. 资源科学, 2020, 42(11): 2119-2131. |
[8] | 郑景云, 文彦君, 方修琦. 过去2000年黄河中下游气候与土地覆被变化的若干特征[J]. 资源科学, 2020, 42(1): 3-19. |
[9] | 阿荣, 毕其格, 董振华. 基于MODIS/NDVI的锡林郭勒草原植被变化及其归因[J]. 资源科学, 2019, 41(7): 1374-1386. |
[10] | 冯琳, 庞玉亭, 钟琪, 张斌斌, 陈哲祺, 王铜. 1980—2016年气候变化对湖南省农业产量的影响[J]. 资源科学, 2019, 41(3): 582-590. |
[11] | 张辰华, 李书恒, 白红英, 朱显亮, 杨琪. 太白山地区7月NDVI多尺度周期变化及其对气候因子的响应[J]. 资源科学, 2019, 41(11): 2131-2143. |
[12] | 常丽博, 骆耀峰, 刘金龙. 哈尼族社会-生态系统对气候变化的脆弱性评估——以云南省红河州哈尼族农村社区为例[J]. 资源科学, 2018, 40(9): 1787-1799. |
[13] | 向燕芸, 陈亚宁, 张齐飞, 卞薇. 天山开都河流域积雪、径流变化及影响因子分析[J]. 资源科学, 2018, 40(9): 1855-1865. |
[14] | 马利群, 秦奋, 孙九林, 王浩, 夏浩铭. 黄土高原昼夜不对称性增温及其对植被NDVI的影响[J]. 资源科学, 2018, 40(8): 1684-1692. |
[15] | 王冠, 王平, 王田野, 李泽红, 于静洁, 刘昌明, BolgovM.V.. 1900年以来贝加尔湖水位变化及其原因分析[J]. 资源科学, 2018, 40(11): 2177-2186. |
|