资源科学 ›› 2021, Vol. 43 ›› Issue (6): 1065-1076.doi: 10.18402/resci.2021.06.01
• 资源管理 • 下一篇
收稿日期:
2020-07-17
修回日期:
2020-08-12
出版日期:
2021-06-25
发布日期:
2021-08-25
通讯作者:
周润民,男,甘肃临夏人,硕士研究生,研究方向为能源环境政策。E-mail: runmin.zhou@ruc.edu.cn。作者简介:
董长贵,男,湖南衡阳人,副教授,研究方向为能源环境政策。E-mail: changgui.dong@ruc.edu.cn
基金资助:
DONG Changgui(), ZHOU Runmin(
), LI Jiaying
Received:
2020-07-17
Revised:
2020-08-12
Online:
2021-06-25
Published:
2021-08-25
摘要:
准确评估补贴对于新兴产业发展的影响是科学制定政府补贴政策的重要依据。一方面,补贴过高会带来财政压力和产能过剩;另一方面,补贴过低会造成产业发展动力不足。中国光伏产业的高速增长伴随着亟待解决的“弃光限电”和财政补贴缺口问题,其背后是光伏补贴政策科学评估的缺乏。为此,本文以中国光伏产业为例,运用面板数据回归和模拟仿真方法,严谨评估中央补贴对光伏产业发展的影响大小。研究发现:①光伏补贴每提升0.1元/度电,全国光伏装机将增加540万~660万kW/年,大大超过现有文献估计。②反事实模拟表明,如果一开始完全取消光伏补贴,中国光伏装机市场规模将在原有基础上缩水85%左右。③以2019年弃光限电问题严重的9省为例,如果光伏补贴调整至不存在弃光的水平,这些省份的光伏补贴缺口每年可减少13亿元。本文研究结论可用于补贴政策调整优化、缓解弃光限电和补贴缺口等多个现实政策问题。
董长贵, 周润民, 李佳颖. 补贴政策对中国光伏装机市场的影响——基于面板数据回归的实证分析[J]. 资源科学, 2021, 43(6): 1065-1076.
DONG Changgui, ZHOU Runmin, LI Jiaying. The effect of feed-in tariff on China’s photovoltaic capacity development: An empirical analysis based on panel data regression[J]. Resources Science, 2021, 43(6): 1065-1076.
表1
中国集中式光伏电站FIT数额(单位:元/kWh)
资源区划分 | 资源区 | 2012.1— 2013.12 | 2014.1— 2016.6 | 2016.7— 2017.6 | 2017.7— 2018.6 | 2018.7—2019.6 |
---|---|---|---|---|---|---|
I | 宁夏,青海海西,甘肃嘉峪关、武威、张掖、酒泉、敦煌、金昌,新疆哈密、塔城、阿勒泰、克拉玛依,内蒙古除赤峰、通辽、兴安盟、呼伦贝尔以外地区 | 1.00 | 0.90 | 0.80 | 0.65 | 0.50 |
II | 北京,天津,黑龙江,吉林,辽宁,四川,云南,内蒙古赤峰、通辽、兴安盟、呼伦贝尔,河北承德、张家口、唐山、秦皇岛,山西大同、朔州、忻州,陕西榆林、延安,青海、甘肃、新疆除I类外其他地区 | 1.00 | 0.95 | 0.88 | 0.75 | 0.60 |
III | 除I类、II类资源区以外的其他地区(该政策未包含西藏、香港、澳门、台湾) | 1.00 | 1.00 | 0.98 | 0.85 | 0.70 |
表3
变量操作化
变量 | 描述 | 数据来源 | 预期符号 |
---|---|---|---|
Capacity | 每个省每半年度的新增光伏装机/万kW | 国家能源局 | / |
FIT | 标杆上网电价/(元/kWh) | 发改委 | + |
LCOE | 平准化成本,根据2018年美元兑人民币汇率,将单位换算为元/kWh | IEA | - |
CF | 容量因子,用以衡量全年发电量的大小 | 文献[ | / |
Res | 潜在日照资源/万kW | 文献[ | + |
Coal_lag | 滞后一期的人均煤炭消费量/(万t标准煤/万人) | 国家统计局 | + |
Elec_lag | 滞后一期的人均电力消费量/(亿kWh/万人) | 国家统计局 | + |
GDP_lag | 滞后一期的人均GDP/(万元/人) | 国家统计局 | - |
Scale | 年初和年中调整的光伏发展指标/万kW | 国家能源局 | - |
Carbon | 碳交易市场(试点所在省份为1,否则为0) | 碳排放交易网http://tanpaifang.com/ | +/- |
FisHe | 地方政府当年财政收入与财政支出之比 | 国家统计局 | +/- |
表4
描述性统计
变量 | 观测值 | 均值 | 标准差 | 最小值 | 最大值 |
---|---|---|---|---|---|
Capacity | 420 | 31.060 | 46.219 | 0.000 | 353.000 |
FIT | 420 | 0.901 | 0.130 | 0.500 | 1.000 |
LCOE | 420 | 0.705 | 0.273 | 0.211 | 1.264 |
CF | 420 | 0.189 | 0.022 | 0.151 | 0.260 |
LCOE_v2 | 420 | 0.705 | 0.284 | 0.151 | 1.557 |
Res | 420 | 732.112 | 1766.914 | 0.850 | 7498.000 |
Coal_lag | 420 | 3.786 | 3.351 | 0.236 | 16.772 |
Elec_lag | 420 | 0.474 | 0.273 | 0.186 | 1.548 |
GDP_lag | 420 | 2.624 | 1.235 | 0.801 | 7.183 |
Scale | 420 | 410.690 | 474.114 | 1.000 | 999.000 |
Carbon | 420 | 0.155 | 0.362 | 0.000 | 1.000 |
FisHe | 420 | 0.507 | 0.186 | 0.156 | 0.931 |
表5
基准回归结果
RE (1) | RE (2) | RE (3) | |
---|---|---|---|
FIT | 112.120*** | 148.756*** | |
(27.991) | (47.089) | ||
LCOE | -70.336*** | ||
(15.479) | |||
LCOE_v2 | -42.254 | ||
(40.628) | |||
FIT_v2 | 91.534*** | ||
(30.082) | |||
Res | 0.004 | 0.006 | 0.005 |
(0.004) | (0.005) | (0.005) | |
Coal_lag | 0.720 | 0.659 | 0.886 |
(1.958) | (2.133) | (2.070) | |
Elec_lag | 33.075* | 44.616* | 34.005 |
(19.713) | (24.052) | (22.045) | |
GDP_lag | -0.146 | -10.727** | -11.136** |
(3.987) | (4.781) | (4.743) | |
Scale | -0.0002 | -0.019** | -0.020** |
(0.006) | (0.009) | (0.009) | |
Carbon | -14.169** | -1.327 | -1.818 |
(6.386) | (6.704) | (6.712) | |
FisHe | -34.754 | 34.594 | 51.012* |
(26.254) | (29.576) | (28.921) | |
省级固定效应 | 是 | 是 | 是 |
时间固定效应 | 否 | 是 | 是 |
F统计量 | 68.132 | 158.057 | 159.457 |
样本量 | 420 | 420 | 420 |
R2 | 0.157 | 0.258 | 0.255 |
豪斯曼检验 | 13.445(不显著) | 4.757(不显著) | 5.896(不显著) |
表6
去掉跨资源区省份的回归结果
FE (1) | RE (2) | RE (3) | |
---|---|---|---|
FIT | 91.790*** | 83.447* | |
(26.116) | (43.565) | ||
LCOE | -47.975** | ||
(19.260) | |||
LCOE_v2 | -36.317 | ||
(39.364) | |||
FIT_v2 | 59.915* | ||
(31.935) | |||
Res | -0.034* | -0.040** | |
(0.020) | (0.019) | ||
省级固定效应 | 是 | 是 | 是 |
时间固定效应 | 否 | 是 | 是 |
F统计量 | 67.463 | 153.46 | 154.656 |
样本量 | 322 | 322 | 322 |
R2 | 0.151 | 0.357 | 0.357 |
豪斯曼检验 | 19.029(显著) | 5.485(不显著) | 6.472(不显著) |
表7
分资源区回归结果
Ⅰ&Ⅱ类 | Ⅲ类 | ||
---|---|---|---|
RE (1) | FE (2) | ||
FIT | 118.299** | 98.314** | |
(48.878) | (40.256) | ||
LCOE | -67.760** | -63.974*** | |
(30.389) | (24.243) | ||
Res | 0.006 | ||
(0.004) | |||
Coal_lag | -1.439 | 13.186 | |
(2.138) | (11.746) | ||
Elec_lag | 47.118** | -45.620 | |
(19.758) | (157.326) | ||
GDP_lag | -8.951 | 4.899 | |
(5.838) | (6.548) | ||
Scale | 0.005 | -0.00005 | |
(0.011) | (0.008) | ||
Carbon | -0.470 | -10.609 | |
(14.176) | (9.415) | ||
FisHe | -12.692 | -272.913*** | |
(36.531) | (88.785) | ||
F统计量 | 47.241 | 61.068 | |
样本量 | 182 | 238 | |
R2 | 0.204 | 0.210 | |
豪斯曼检验 | 7.95(不显著) | 16.38*(显著) |
表8
2019年上半年主要省份FIT调整的影响估计
省份 | 半年弃光量/亿kWh | 消除弃光的FIT降低值/(元/kWh) | 新增装机减少量/万kW | 补贴缺口的变化/亿元 |
---|---|---|---|---|
新疆 | 7.7 | 0.94 | 105.58 | -1.52 |
甘肃 | 4.3 | 0.54 | 60.74 | -0.51 |
青海 | 5.2 | 0.59 | 65.89 | -2.07 |
陕西 | 1.9 | 0.25 | 28.15 | -1.17 |
宁夏 | 1.9 | 0.24 | 26.96 | -0.07 |
河北 | 1.6 | 0.19 | 21.72 | -0.75 |
内蒙古 | 0.6 | 0.06 | 7.24 | -0.34 |
吉林 | 0.4 | 0.05 | 5.31 | -0.03 |
山西 | 0.1 | 0.01 | 1.36 | -0.13 |
小计 | 23.7 | 322.94 | -6.58 |
[1] | 陈婕, 邓学平. 可再生能源投资与绿色经济发展的实证分析[J]. 华东经济管理, 2020, 34(11):100-106. |
[ Chen J, Deng X P. Empirical analysis of renewable energy investment and green economy development[J]. East China Economic Management, 2020, 34(11):100-106.] | |
[2] | 牟初夫, 王礼茂, 屈秋实, 等. 主要新能源发电替代减排的研究综述[J]. 资源科学, 2017, 39(12):2323-2334. |
[ Mou C F, Wang L M, Qu Q S, et al. Review of emission reduction research on major new energy generation[J]. Resources Science, 2017, 39(12):2323-2334.] | |
[3] | 徐乐, 赵领娣. 重点产业政策的新能源技术创新效应研究[J]. 资源科学, 2019, 41(1):113-131. |
[ Xu L, Zhao L D. New energy technology innovation effect of key industrial policy[J]. Resources Science, 2019, 41(1):113-131.] | |
[4] | 胡宗义, 邱先翼, 李毅. 政府补助对可再生能源投资的门槛效应研究[J]. 财经理论与实践, 2020, 41(5):61-69. |
[ Hu Z Y, Qiu X Y, Li Y. Threshold effect of government subsidies on renewable energy investments[J]. The Theory and Practice of Finance and Economics, 2020, 41(5):61-69.] | |
[5] | 涂强, 莫建雷, 范英. 中国可再生能源政策演化、效果评估与未来展望[J]. 中国人口·资源与环境, 2020, 30(3):29-36. |
[ Tu Q, Mo J L, Fan Y. The evaluation and evaluation of China’s renewable energy policies and their implications for the future[J]. China Population Resources and Environment, 2020, 30(3):29-36.] | |
[6] | 王风云. 我国可再生能源电价补贴及优化研究[J]. 学习与探索, 2020, (3):95-102. |
[ Wang F Y. Research on renewable energy electricity price subsidy and optimization in China[J]. Study & Exploration, 2020, (3):95-102.] | |
[7] | 张丽虹, 何凌云, 钟章奇. 可再生能源投资及其影响因素: 一个理论分析框架[J]. 西安财经学院学报, 2019, 32(6):66-73. |
[ Zhang L H, He L Y, Zhong Z Q. Renewable energy investment and its influencing factors: A theoretical analysis framework[J]. Journal of University of Finance & Economics, 2019, 32(6):66-73.] | |
[8] |
Zhang X G, Wang D, Liu Y H, et al. Wind power development in China: An assessment of provincial policies[J]. Sustainability, 2016, 8(8):734-734.
doi: 10.3390/su8080734 |
[9] |
Zhao X L, Li S J, Zhang S F, et al. The effectiveness of China’s wind power policy: An empirical analysis[J]. Energy Policy, 2016, 95:269-279.
doi: 10.1016/j.enpol.2016.04.050 |
[10] | Xia F, Lu X, Song F. The role of feed-in tariff in the curtailment of wind power in China[J]. Energy Economics, 2020, DOI: 10.1016/j.eneco.2019.104661. |
[11] |
Zhang R X, Ni M, Shen G Q P, et al. An analysis on the effectiveness and determinants of the wind power feed-in tariff policy at China’s national-level and regional-grid-level[J]. Sustainable Energy Technologies and Assessments, 2019, 34:87-96.
doi: 10.1016/j.seta.2019.04.010 |
[12] | 赵彦云, 李倩. 风电上网电价政策地区差异及其产业效应[J]. 资源科学, 2021, 43(1):12-22. |
[ Zhao Y Y, Li Q. Regional difference and industrial effects of wind power feed-in tariff policy[J]. Resources Science, 2021, 43(1):12-22.] | |
[13] |
Matisoff D C, Johnson E P. The comparative effectiveness of residential solar incentives[J]. Energy Policy, 2017, 108:44-54.
doi: 10.1016/j.enpol.2017.05.032 |
[14] |
Crago C L, Chernyakhovskiy I. Are policy incentives for solar power effective? Evidence from residential installations in the Northeast[J]. Journal of Environmental Economics and Management, 2017, 81:132-151.
doi: 10.1016/j.jeem.2016.09.008 |
[15] |
Leepa C, Unfried M. Effects of a cut-off in feed-in tariffs on photovoltaic capacity: Evidence from Germany[J]. Energy Policy, 2013, 56:536-542.
doi: 10.1016/j.enpol.2013.01.018 |
[16] |
Hughes J E, Podolefsky M. Getting green with solar subsidies: Evidence from the California solar initiative[J]. Journal of the Association of Environmental and Resource Economists, 2015, 2(2):235-275.
doi: 10.1086/681131 |
[17] | 贾亚雷, 石建国, 庞永超, 等. 基于省级截面数据的分布式光伏发电补贴政策实证分析[J]. 可再生能源, 2016, 34(10):1435-1440. |
[ Jia Y L, Shi J G, Pang Y C, et al. An empirical analysis of subsidy policy on distributed photovoltaic power generation based on provincial cross-sectional data[J]. Renewable Energy Resources, 2016, 34(10):1435-1440.] | |
[18] |
Dong C G, Qi Y, Dong W J, et al. Decomposing driving factors for wind curtailment under economic new normal in China[J]. Applied energy, 2018, 217:178-188.
doi: 10.1016/j.apenergy.2018.01.040 |
[19] | 北京大学国家发展研究院能源安全与国家发展研究中心, 中国人民大学经济学院能源经济系联合课题组. 关于中国风电和光伏发电补贴缺口和大比例弃电问题的研究[J]. 国际经济评论, 2018, (4):67-85. |
[Joint research Group, Department of Energy Economics, School of Economics, Renmin University of China, National Research Center for Energy Security and Development, Peking University. Subsidy crisis and large-scale curtailment of wind and solar power in China[J]. International Economic Review, 2018, (4):67-85.] | |
[20] |
Xia F, Song F. The uneven development of wind power in China: Determinants and the role of supporting policies[J]. Energy Economics, 2017, 67:278-286.
doi: 10.1016/j.eneco.2017.08.008 |
[21] | 黄珺仪. 补贴政策对风电产业发展影响的实证分析[J]. 生态经济, 2018, 34(5):115-120. |
[ Huang J Y. An empirical analysis of the impact of subsidy policy on wind power industry[J]. Ecological Economy. 2018, 34(5):115-120.] | |
[22] |
Dong L, Liang H W, Gao Z Q, et al. Spatial distribution of China’s renewable energy industry: Regional features and implications for a harmonious development future[J]. Renewable and Sustainable Energy Reviews, 2016, 58:1521-1531.
doi: 10.1016/j.rser.2015.12.307 |
[23] |
Goh H H, Lee S W, Chua Q S, et al. Renewable energy project: Project management, challenges and risk[J]. Renewable and Sustainable Energy Reviews, 2014, 38:917-932.
doi: 10.1016/j.rser.2014.07.078 |
[24] |
Zhao X G, Wang J Y, Liu X M, et al. China’s wind, biomass and solar power generation: What the situation tells us?[J]. Renewable and Sustainable Energy Reviews, 2012, 16(8):6173-6182.
doi: 10.1016/j.rser.2012.07.020 |
[25] | 陈枫楠, 王礼茂. 中国太阳能光伏产业空间格局及影响因素分析[J]. 资源科学, 2012, 34(2):287-294. |
[ Chen F N, Wang L M. On distribution and determinants of PV solar energy industry in China[J]. Resources Science, 2012, 34(2):287-294.] | |
[26] |
He G, Kammen D M. Where, when and how much solar is available? A provincial-scale solar resource assessment for China[J]. Renewable Energy, 2016, 85:74-82.
doi: 10.1016/j.renene.2015.06.027 |
[27] | 周泽人, 舒印彪, 董存, 等. 基于混合威布尔分布的风能资源分布统计分析研究[J]. 数理统计与管理, 2020, 39(4):584-594. |
[ Zhou Z R, Shu Y B, Dong C, et al. Statistical analysis of wind energy distribution based on mixture Weibull distribution model[J]. Journal of Applied Statistics and Management, 2020, 39(4):584-594.] | |
[28] |
Bao C, Fang C L. Geographical and environmental perspectives for the sustainable development of renewable energy in urbanizing China[J]. Renewable and Sustainable Energy Reviews, 2013, 27:464-474.
doi: 10.1016/j.rser.2013.07.008 |
[29] |
Liu X, Mao G Z, Ren J, et al. How might China achieve its 2020 emissions target? A scenario analysis of energy consumption and CO2 emissions using the system dynamics model[J]. Journal of Cleaner Production, 2015, 103:401-410.
doi: 10.1016/j.jclepro.2014.12.080 |
[30] |
Yuan X L, Zuo J, Huisingh D. Social acceptance of wind power: A case study of Shandong Province, China[J]. Journal of Cleaner Production, 2015, 92:168-178.
doi: 10.1016/j.jclepro.2014.12.097 |
[31] |
Ansari M F, Kharb R K, Luthra S, et al. Analysis of barriers to implement solar power installations in India using interpretive structural modeling technique[J]. Renewable and Sustainable Energy Reviews, 2013, 27:163-174.
doi: 10.1016/j.rser.2013.07.002 |
[32] |
Lin B Q, Omoju O E, Okonkwo J U. Factors influencing renewable electricity consumption in China[J]. Renewable and Sustainable Energy Reviews, 2016, 55:687-696.
doi: 10.1016/j.rser.2015.11.003 |
[33] | 任晓松, 马茜, 刘宇佳, 等. 碳交易政策对高污染工业企业经济绩效的影响: 基于多重中介效应模型的实证分析[J]. 资源科学, 2020, 42(9):1750-1763. |
[ Ren X S, Ma Q, Liu Y J, et al. The impact of carbon trading policy on the economic performance of highly polluting industrial enterprises: Empirical analysis based on multiple mediating effect model[J]. Resources Science, 2020, 42(9):1750-1763.] | |
[34] | 王丽颖. 中国碳交易试点政策的减排效果分析[J]. 社会科学战线, 2021, (4):251-255. |
[ Wang L Y. Analysis of emission reduction effect of carbon trading pilot policies in China[J]. Social Science Front, 2021, (4):251-255.] | |
[35] | 张宁, 刘青君. 碳交易减少了中国火电厂的减排成本吗? 基于2005-2010年面板数据的实证分析[J]. 北京理工大学学报(社会科学版), 2019, 21(1):7-16. |
[ Zhang N, Liu Q J. Does carbon trading reduce the carbon emissions abatement cost for Chinese thermal companies? Empirical analysis based on panel data from 2005 to 2010[J]. Journal of Beijing Institute of Technology (Social Sciences Edition), 2019, 21(1):7-16.] | |
[36] | 薛飞, 周民良. 中国碳交易市场规模的减排效应研究[J]. 华东经济管理, 2021, 35(6):11-21. |
[ Xue F, Zhou M L. Research on emission reduction effect of the scale of China’s carbon trading market[J]. East China Economic Management, 2021, 35(6):11-21.] | |
[37] | 朱凡, 李天琦. 中国碳交易市场减排绩效的实证研究[J]. 税务与经济, 2021, (3):54-62. |
[ Zhu F, Li T Q. An empirical study on emission reduction performance of China’s carbon trading market[J]. Taxation and Economy, 2021, (3):54-62.] | |
[38] | 李成威, 杜崇珊. 公共风险、公共债务与财政健康度[J]. 现代经济探讨, 2021, (3):43-49. |
[ Li C W, Du C S. Public risk, public debt and fiscal health[J]. Modern Economic Research, 2021, (3):43-49.] |
[1] | 徐涛, 赵敏娟, 李二辉, 乔丹. 技术认知、补贴政策对农户不同节水技术采用阶段的影响分析[J]. 资源科学, 2018, 40(4): 809-817. |
[2] | 陈枫楠, 王礼茂. 中国太阳能光伏产业空间格局及影响因素分析[J]. , 2012, 34(2): 287-294. |
|