资源科学 ›› 2021, Vol. 43 ›› Issue (4): 745-755.doi: 10.18402/resci.2021.04.09
向宁1,2, 王礼茂1,2(), 屈秋实1,2, 熊琛然1,2, 王博1,2
收稿日期:
2020-06-22
修回日期:
2021-01-25
出版日期:
2021-04-25
发布日期:
2021-06-25
通讯作者:
王礼茂,男,安徽巢湖人,研究员,主要从事能源与地缘政治、能源经济与气候变化政策等方面的研究。E-mail: lmwang@igsnrr.ac.cn作者简介:
向宁,男,四川什邡人,博士研究生,主要研究方向为能源经济与地缘政治。E-mail: xiangn.18b@igsnrr.ac.cn
基金资助:
XIANG Ning1,2, WANG Limao1,2(), QU Qiushi1,2, XIONG Chenran1,2, WANG Bo1,2
Received:
2020-06-22
Revised:
2021-01-25
Online:
2021-04-25
Published:
2021-06-25
摘要:
为了应对气候变化、资源短缺与环境污染问题,各国都在积极开发清洁能源,风能作为可再生的清洁能源,得到了世界各国的高度重视。在实现2030年碳排放达峰的目标约束下,近年来,中国风电规模也处于快速增长的阶段。风力发电过程虽然不会排放温室气体和污染物,但从产业的生命周期角度分析,在设备制造、运输、安装、运行、废弃等环节也会带来一定量的温室气体和污染物的排放,因此风力发电并不是零排放的能源。本文利用全生命周期评价方法对比研究了100 MW海上和陆上风电系统的全生命周期的排放情况,重点分析了不同功率风机的风电场的全生命周期温室气体排放情况,并分析了一般污染物对于环境的影响。研究结果表明:①海上风电场全生命周期温室气体排放量平均为1.49 g CO2/kWh,陆上风电场平均排放量3.62 g CO2/kWh,均远远小于传统火力发电,比较而言,在减少温室气体排放方面,海上风电系统更具优势;②在全生命周期污染物排放方面,海上风电场全生命周期污染物的排放量要小于陆上风电场,且具有更短的能源回报时间,经济效益更高,对环境更友好;③在全生命周期中,风机的生产过程所产生的温室气体排放占到总温室气体排放的40%以上,同时风机生产所排放的污染物对于环境的负面影响最大,约占整个生命周期影响的50%以上;④配备更大功率的风机将有助于减少温室气体和污染物的排放。研究结果可为减少环境污染、实现碳排放达峰目标提供参考依据。
向宁, 王礼茂, 屈秋实, 熊琛然, 王博. 基于生命周期评估的海、陆风电系统排放对比[J]. 资源科学, 2021, 43(4): 745-755.
XIANG Ning, WANG Limao, QU Qiushi, XIONG Chenran, WANG Bo. Comparison of emissions from offshore and onshore wind power systems based on life cycle assessment[J]. Resources Science, 2021, 43(4): 745-755.
表1
海上和陆上风电场材料清单"
阶段 | 材料 | 重量/t | |||
---|---|---|---|---|---|
2 MW陆上 | 2 MW海上 | 3 MW陆上 | 3 MW海上 | ||
设备制造阶段(风机) | 钢铁 | 192.0 | 168.4 | 265.1 | 186.1 |
铸铁 | 36.4 | 38.3 | 40.6 | 40.6 | |
玻璃纤维 | 18.4 | 18.8 | 19.8 | 19.8 | |
环氧树脂 | 9.4 | 9.5 | 10.0 | 10.0 | |
铜 | 3.9 | 4.1 | 4.4 | 4.4 | |
润滑油 | 0.9 | 0.9 | 1.0 | 1.0 | |
铝 | 0.2 | 0.2 | 0.2 | 0.2 | |
聚酯纤维 | 1.7 | 1.8 | 1.9 | 1.9 | |
设备制造阶段(电缆) | 铝 | 157.0 | 157.0 | 157.0 | 157.0 |
铜 | 40.0 | 40.0 | 40.0 | 40.0 | |
高分子聚合物 | 350.0 | 350.0 | 350.0 | 350.0 | |
玻璃纤维 | 1.0 | 1.0 | 1.0 | 1.0 | |
设备制造阶段(变电站) | 钢铁 | 37.0 | 37.0 | 37.0 | 37.0 |
铜 | 10.0 | 10.0 | 10.0 | 10.0 | |
高分子聚合物 | 1.0 | 1.0 | 1.0 | 1.0 | |
橡胶 | 3.0 | 3.0 | 3.0 | 3.0 | |
玻璃纤维 | 1.0 | 1.0 | 1.0 | 1.0 | |
电子设备 | 1.0 | 1.0 | 1.0 | 1.0 | |
润滑油 | 13.0 | 13.0 | 13.0 | 13.0 | |
风电场建设和安装 | 碎石 | 939.0 | 192.0 | 939.0 | 192.0 |
沙子 | 2228.0 | 469.0 | 2228.0 | 469.0 | |
混凝土 | 864.7 | 304.0 | 1164.7 | 404.0 | |
铸铁 | 27.0 | 9.0 | 36.0 | 12.0 | |
钢铁 | 5.1 | 5.7 | 15.1 | 11.0 | |
铝 | 0.8 | 0.8 | 1.1 | 1.1 | |
铜 | 0.3 | 2.8 | 0.4 | 4.3 | |
PVC | 1.7 | 0.0 | 1.7 | 0.0 | |
铅 | 0.0 | 3.4 | 0.0 | 5.0 | |
PEX | 0.0 | 0.5 | 0.0 | 0.8 | |
维护 | 玻璃纤维 | 4.3 | 4.3 | 4.6 | 4.6 |
环氧树脂 | 2.9 | 2.9 | 3.0 | 3.0 | |
钢铁 | 3.4 | 3.6 | 3.8 | 3.8 | |
铸铁 | 4.4 | 4.7 | 5.0 | 5.0 | |
铜 | 0.6 | 0.6 | 0.7 | 0.7 | |
润滑油 | 0.1 | 0.1 | 0.2 | 0.2 |
表3
陆上和海上风电场全生命周期污染物排放的环境影响"
影响类别 | 单位 | 2 MW陆上 | 2 MW海上 | 3 MW陆上 | 3 MW海上 |
---|---|---|---|---|---|
平流层臭氧消耗 | kg CFC11/kWh | 12.02 | 9.27 | 9.13 | 6.76 |
电离辐射 | kBq Co-60/kWh | 1.38E+05 | 9.97E+04 | 1.08E+05 | 7.23E+04 |
臭氧形成(人类健康) | kg NOx/kWh | 82574.35 | 60647.10 | 64224.92 | 44252.25 |
细颗粒物 | kg PM2.5/kWh | 34224.84 | 30863.72 | 27239.53 | 23155.74 |
臭氧形成(陆地生态系统) | kg NOx/kWh | 84825.01 | 62582.25 | 66044.59 | 45619.40 |
土地酸化 | kg SO2/kWh | 75407.39 | 69865.36 | 59575.09 | 53052.25 |
淡水富营养化 | kg P/kWh | 1676.42 | 2047.19 | 1394.78 | 1657.49 |
海洋富营养化 | kg N/kWh | 155.84 | 154.81 | 50.46 | 133.79 |
土地生态毒性 | kg 1,4-DCB/kWh | 1.79E+08 | 1.69E+08 | 1.42E+08 | 1.33E+08 |
淡水生态毒性 | kg 1,4-DCB/kWh | 72591.33 | 69253.62 | 54098.49 | 49167.84 |
海洋生态毒性 | kg 1,4-DCB/kWh | 1.26E+05 | 1.12E+05 | 1.01E+05 | 8.67E+04 |
致癌毒性 | kg 1,4-DCB/kWh | 5.72E+05 | 4.69E+05 | 5.16E+05 | 3.52E+05 |
非致癌毒性 | kg 1,4-DCB/kWh | 3.78E+06 | 4.44E+06 | 3.02E+06 | 3.61E+06 |
[1] | AIE. Key World Energy Statistics 2018[M]. Paris: International Energy Agency, 2018. |
[2] |
Herbert G M J, Iniyan S, Sreevalsan E, et al. A review of wind energy technologies[J]. Renewable and Sustainable Energy Reviews, 2007,11(6):1117-1145.
doi: 10.1016/j.rser.2005.08.004 |
[3] |
Chen Z, Guerrero J M, Blaabjerg F. A review of the state of the art of power electronics for wind turbines[J]. IEEE Transactions on Power Electronics, 2009,24(8):1859-1875.
doi: 10.1109/TPEL.2009.2017082 |
[4] | IRENA. International Renewable Energy Agency[R]. Abu Dhabi: International Renewable Energy Agency, 2019. |
[5] | IEA. World Energy Outlook 2019[R/OL].(2019-11) [2021-01-25].https://www.iea.org/reports/world-energy-outlook-2019. |
[6] | 王恰. 中国风电产业40年发展成就与展望[J]. 中国能源, 2020,42(9):28-32, 9. |
[ Wang Q. Achievements and prospects of China’s wind power industry in the past 40 years[J]. Renewable Energy, 2020,42(9):28-32, 9.] | |
[7] | 新华网. 习近平在气候雄心峰会上的讲话(全文)[N/OL].( 2020 -12-12) [2021-01-25]. https://baijiahao.baidu.com/s?id=1685886202481384721&wfr=spider&for=pc. |
[Xinhua News Agency. Xi Jinping’s Speech at the Summit of Climate Ambition[N/OL]. [2020-12-12] [2021-01-25]. https://baijiahao.baidu.com/s?id=1685886202481384721&wfr=spider&for=pc.] | |
[8] |
An J J, Zou Z, Chen G P, et al. An iot-based life cycle assessment platform of wind turbines[J]. Sensors, 2021,21(4):1233.
doi: 10.3390/s21041233 |
[9] |
Mendecka B, Lombardi L. Life cycle environmental impacts of wind energy technologies: A review of simplified models and harmonization of the results[J]. Renewable and Sustainable Energy Reviews, 2019,111:462-480.
doi: 10.1016/j.rser.2019.05.019 |
[10] | Mello G, Dias M F, Robaina M. Wind farms life cycle assessment review: CO2 emissions and climate change[J]. Energy Reports, 2020,6:214-219. |
[11] |
Gkantou M, Rebelo C, Baniotopoulos C. Life cycle assessment of tall onshore hybrid steel wind turbine towers[J]. Energies, 2020,13(15):3950-3950.
doi: 10.3390/en13153950 |
[12] |
Alsaleh A, Sattler M. Comprehensive life cycle assessment of large wind turbines in the US[J]. Clean Technologies and Environmental Policy, 2019,21(4):887-903.
doi: 10.1007/s10098-019-01678-0 |
[13] |
Gao C K, Na H M, Song K H, et al. Environmental impact analysis of power generation from biomass and wind farms in different locations[J]. Renewable and Sustainable Energy Reviews, 2019,102:307-317.
doi: 10.1016/j.rser.2018.12.018 |
[14] |
Kouloumpis V, Sobolewski R, Yan X Y. Performance and life cycle assessment of a small scale vertical axis wind turbine[J]. Journal of Cleaner Production, 2020, DOI: 10.1016/j.jclepro.2019.119 520.
doi: 10.1016/j.jclepro.2019.119 520 |
[15] |
Weinzettel J, Reenaas M, Solli C, et al. Life cycle assessment of a floating offshore wind turbine[J]. Renewable Energy, 2009,34(3):742-747.
doi: 10.1016/j.renene.2008.04.004 |
[16] |
Chipindula J, Botlaguduru V, Du H, et al. Life cycle environmental impact of onshore and offshore wind farms in Texas[J]. Sustainability, 2018,10(6):2022.
doi: 10.3390/su10062022 |
[17] |
Bhandari R, Kumar B, Mayer F. Life cycle greenhouse gas emission from wind farms in reference to turbine sizes and capacity factors[J]. Journal of Cleaner Production, 2020, DOI: 10.1016/j.jclepro.2020.123385.
doi: 10.1016/j.jclepro.2020.123385 |
[18] |
Schreiber A, Marx J, Zapp P. Comparative life cycle assessment of electricity generation by different wind turbine types[J]. Journal of cleaner production, 2019,233:561-572.
doi: 10.1016/j.jclepro.2019.06.058 pmid: WOS:000479025500045 |
[19] | 张丛光, 邱凌, 王飞, 等. 基于LCA的黄土高原沼气生态果园环境影响研究[J]. 农业环境科学学报, 2018,37(4):833-840. |
[ Zhang C G, Qiu L, Wang F, et al. Environmental effects of the Loess Plateau biogas eco-orchard based on life cycle assessment (LCA)[J]. Journal of Agro-Environment Science, 2018,37(4):833-840.] | |
[20] | 王珊珊, 张寒, 杨红强. 中国人造板行业的生命周期碳足迹和能源耗用评估[J]. 资源科学, 2019,41(3):521-531. |
[ Wang S S, Zhang H, Yang H Q. Carbon footprint and energy consumption based on life cycle assessment of wood-based panel industry in China[J]. Resources Science, 2019,41(3):521-531.] | |
[21] | 王云, 朱宇恩, 张军营, 等. 中国煤炭产业生命周期模型构建与发展阶段判定[J]. 资源科学, 2015,37(10):1881-1890. |
[ Wang Y, Zhu Y E, Zhang J Y, et al. Construction and development stage decision model of coal industry life cycle in China[J]. Resources Science, 2015,37(10):1881-1890.] | |
[22] | 吴明, 姜国强, 贾冯睿, 等. 基于物质流和生命周期分析的石油行业碳排放[J]. 资源科学, 2018,40(6):1287-1296. |
[ Wu M, Jiang G Q, Jia F R, et al. Carbon emissions from the petroleum industry based on the analysis of material flow and life cycle[J]. Resources Science, 2018,40(6):1287-1296.] | |
[23] | 赵晓丽, 王顺昊. 基于CO2减排效益的风力发电经济性评价[J]. 中国电力, 2014,47(8):154-160. |
[ Zhao X L, Wang S H. Economic evaluation of wind power generation based on benefits of carbon dioxide emission reduction[J]. Electric Power, 2014,47(8):154-160.] | |
[24] |
Wang L K, Wang Y, Du H B, et al. A comparative life-cycle assessment of hydro, nuclear and wind power: A China study[J]. Applied Energy, 2019,249:37-45.
doi: 10.1016/j.apenergy.2019.04.099 |
[25] | 吴凡. 基于LCA理论的风电项目碳减排效果分析[D]. 北京: 华北电力大学, 2019. |
[ Wu F. Research on the Carbon Emission Reduction Benefit of Wind Power Project Based on LCA Theory[D]. Beijing: North China Electric Power University, 2019.] | |
[26] |
Wang S F, Wang S C, Liu J X. Life-cycle green-house gas emissions of onshore and offshore wind turbines[J]. Journal of Cleaner Production, 2019,210:804-810.
doi: 10.1016/j.jclepro.2018.11.031 |
[27] | Vestas. Life Cycle Assessment of Electricity Production from an Onshore V150-4.2 MW Wind Plant[R]. Hedeager: Vestas Wind Systems A/S, 2019. |
[28] | Vestas. Life Cycle Assessment of Offshore and Onshore Sited Wind Farms[R]. Hedeager: Vestas Wind Systems A/S, 2004. |
[29] | Vestas. Life Cycle Assessment of Offshore and Onshore Sited Wind Power Plants Based on Vestas V90-3 MW Turbines[R]. Hedeager: Vestas Wind Systems A/S, 2005. |
[30] |
Huang Y F, Gan X J, Chiueh P T. Life cycle assessment and net energy analysis of offshore wind power systems[J]. Renewable Energy, 2017,102:98-106.
doi: 10.1016/j.renene.2016.10.050 |
[31] |
Davidsson S, Höök M, Wall G. A review of life cycle assessments on wind energy systems[J]. The International Journal of Life Cycle Assessment, 2012,17(6):729-742.
doi: 10.1007/s11367-012-0397-8 |
[32] |
Kabir M R, Rooke B, Dassanayake G D M, et al. Comparative life cycle energy, emission, and economic analysis of 100 kW nameplate wind power generation[J]. Renewable Energy, 2012,37(1):133-141.
doi: 10.1016/j.renene.2011.06.003 |
[33] |
Haapala K R, Prempreeda P. Comparative life cycle assessment of 2.0 MW wind turbines[J]. International Journal of Sustainable Manufacturing, 2014,3(2):170-185.
doi: 10.1504/IJSM.2014.062496 |
[34] | Hauschild M Z, Huijbregts M A J,. Introducing Life Cycle Impact Assessment[M]. Dordrecht: Springer, 2015. |
[35] |
Li J Y, Li S S, Wu F. Research on carbon emission reduction benefit of wind power project based on life cycle assessment theory[J]. Renewable Energy, 2020,155:456-468.
doi: 10.1016/j.renene.2020.03.133 |
[36] |
Huijbregts M A J, Steinmann Z J N, Elshout P M F, et al. Recipe2016: A harmonized life cycle impact assessment method at midpoint and endpoint level[J]. The International Journal of Life Cycle Assessment, 2016,22:138-147.
doi: 10.1007/s11367-016-1246-y |
[37] | 丁宁, 杨建新, 吕彬. 中国省级火电供应生命周期清单分析[J]. 生态学报, 2016,36(22):7192-7201. |
[ Ding N, Yang J X, Lv B. Life cycle inventory analysis of provincial thermal electricity in China[J]. Acta Ecologica Sinica, 2016,36(22):7192-7201.] | |
[38] |
Keith D W, De Carolis J F, Denkenberger D C, et al. The influence of large-scale wind power on global climate[J]. Proceedings of The National Academy of Sciences of the United States America, 2004,101(46):16115-16120.
doi: 10.1073/pnas.0406930101 |
[39] |
Solaun K, Cerdá E. Impacts of climate change on wind energy power: Four wind farms in Spain[J]. Renewable energy, 2020,145:1306-1316.
doi: 10.1016/j.renene.2019.06.129 |
[40] |
Wang C E, Prinn R G. Potential climatic impacts and reliability of very large-scale wind farms[J]. Atmospheric Chemistry and Physics, 2010,10(4):2053-2061.
doi: 10.5194/acp-10-2053-2010 |
[41] | 胡菊. 大型风电场建设对区域气候影响的数值模拟研究[D]. 兰州: 兰州大学, 2012. |
[ Hu J. Numerical Simulation Research on Impact of Large-scale Wind Farms on Regional Climate[D]. Lanzhou: Lanzhou University, 2012.] | |
[42] |
Fitch A C. Climate impacts of large-scale wind farms as parameterized in a global climate model[J]. Journal of Climate, 2015, DOI: 10.1175/JCLI-D-14-00245.1.
doi: 10.1175/JCLI-D-14-00245.1 |
[43] |
Xia G, Cervarich M C, Roy S B, et al. Simulating impacts of real-world wind farms on land surface temperature using the WRF Model: Validation with observations[J]. Monthly Weather Review, 2017,145(12):4813-4836.
doi: 10.1175/MWR-D-16-0401.1 |
[44] | Sun H W, Luo Y, Zhao Z C, et al. The impacts of Chinese wind farms on climate[J]. Journal of Geophysical Research: Atmospheres Homepage, 2018,123(10):5177-5187. |
[45] | Pryor S C, Barthelmie R J, Bukovsky M S, et al. Climate change impacts on wind power generation[J]. Nature Reviews Earth & Environment, 2020,1(12):627-643. |
[46] | 许遐祯, 郑有飞, 杨丽慧, 等. 风电场对盐城珍禽国家自然保护区鸟类的影响[J]. 生态学杂志, 2010,29(3):560-565. |
[ Xu X Z, Zheng Y F, Yang L H, et al. Influence of wind power field on birds in Yancheng National Rare Waterfowls Nature Reserve of Jiangsu[J]. Chinese Journal of Ecology, 2010,29(3):560-565.] | |
[47] | Fox A D, Petersen I K. Offshore wind farms and their effects on birds[J]. Dansk Ornithologisk Forenings Tidsskrift, 2019,113:86-101. |
[48] |
李国庆, 张春华, 张丽, 等. 风电场对草地植被生长影响分析: 以内蒙古灰腾梁风电场为例[J]. 地理科学, 2016,36(6):959-964.
doi: 10.13249/j.cnki.sgs.2016.06.020 pmid: 1EFFBD1A-87D8-4259-85B6-DBE7F27576AF |
[ Li G Q, Zhang C H, Zhang L, et al. Effects of wind farms on grassland vegetation: A case study of Huitengliang Wind Farm, Inner Mongolia[J]. Scientia Geographica Sinica, 2016,36(6):959-964.]
pmid: 1EFFBD1A-87D8-4259-85B6-DBE7F27576AF |
|
[49] |
Lee S, Kim K, Choi W, et al. Annoyance caused by amplitude modulation of wind turbine noise[J]. Noise Control Engineering Journal, 2011,59(1):38-46.
doi: 10.3397/1.3531797 |
[50] |
Poulsen A H, Raaschou-Nielsen O, Peña A, et al. Long-term exposure to wind turbine noise and risk for myocardial infarction and stroke: A nationwide cohort study[J]. Environmental Health Perspectives, 2019, DOI: 10.1289/EHP3340.
doi: 10.1289/EHP3340 |
[51] | 蒋俊霞, 杨丽薇, 李振朝, 等. 风电场对气候环境的影响研究进展[J]. 地球科学进展, 2019,34(10):1038-1049. |
[ Jiang J X, Yang L W, Li Z C, et al. Progress in the research on the impact of wind farms on climate and environment[J]. Advances in Earth Science, 2019,34(10):1038-1049.] |
[1] | 汪鹏, 王翘楚, 韩茹茹, 汤林彬, 刘昱, 蔡闻佳, 陈伟强. 全球关键金属-低碳能源关联研究综述及其启示[J]. 资源科学, 2021, 43(4): 669-681. |
[2] | 李新, 康欣宇, 林靖, 陈璐, 王敏晰. 中国铅资源流动及其循环效率[J]. 资源科学, 2021, 43(3): 535-545. |
[3] | 邸敬涵, 温宗国. 资源产品贸易的环境影响及隐含环境流分析——以铜资源为例[J]. 资源科学, 2021, 43(3): 612-625. |
[4] | 毛爱涵, 李发祥, 杨思源, 黄婷, 郝蕊芳, 李思函, 于德永. 青海省清洁能源发电潜力及价值分析[J]. 资源科学, 2021, 43(1): 104-121. |
[5] | 郝敏, 陈伟强, 马梓洁, 张超, 甘建邦. 2000—2015年中国铜废碎料贸易及效益风险分析[J]. 资源科学, 2020, 42(8): 1515-1526. |
[6] | 刘晓, 徐建华. 公众对电力来源清洁化的支付意愿[J]. 资源科学, 2020, 42(12): 2328-2340. |
[7] | 李洪义, 吴儒练, 田逢军. 近20年国内外国家公园游憩研究综述[J]. 资源科学, 2020, 42(11): 2210-2223. |
[8] | 马丽, 田华征, 康蕾. 黄河流域矿产资源开发的生态环境影响与空间管控路径[J]. 资源科学, 2020, 42(1): 137-149. |
[9] | 陈慧, 付光辉, 刘友兆. 江苏省县域农业温室气体排放:时空差异与趋势演进[J]. 资源科学, 2018, 40(5): 1084-1094. |
[10] | 刘洋, 郑景云, 葛全胜, 王芳. 低碳发展背景下中国温室气体排放变化及其对全球减排的贡献[J]. 资源科学, 2017, 39(12): 2399-2407. |
[11] | 张双益, 胡非. GlobeLand30地表覆盖产品应用于精细化风能资源评估[J]. 资源科学, 2017, 39(1): 125-135. |
[12] | 王灵恩, 钟林生, 成升魁. 旅游消费的资源环境效应研究框架及其作用机理探析[J]. 资源科学, 2016, 38(8): 1452-1464. |
[13] | 杨璐, 李夏菲, 于书霞, 刘微, 胡荣桂. 湖北省猪粪管理温室气体减排潜力分析[J]. 资源科学, 2016, 38(3): 557-564. |
[14] | 刘健, 孙艳伟, 王润, 肖黎姗, 杨德伟. 基于GIS的福建省陆地风能资源开发潜力评估[J]. , 2012, 34(6): 1167-1174. |
[15] | 林秀芳, 文明章, 吴滨, 杨丽慧, 游立军. 福建沿海70米高度风能资源分布特点及评估[J]. , 2011, 33(7): 1346-1352. |
|