资源科学 ›› 2021, Vol. 43 ›› Issue (3): 612-625.doi: 10.18402/resci.2021.03.17
收稿日期:
2021-02-20
修回日期:
2021-03-21
出版日期:
2021-03-25
发布日期:
2021-05-25
通讯作者:
温宗国
作者简介:
邸敬涵,女,吉林长春人,博士后,主要从事资源环境管理政策研究。E-mail: jinghan.di@ruc.edu.cn
基金资助:
DI Jinghan1,2(), WEN Zongguo2(
)
Received:
2021-02-20
Revised:
2021-03-21
Online:
2021-03-25
Published:
2021-05-25
Contact:
WEN Zongguo
摘要:
资源产品大规模的国际贸易在对全球资源进行再分配的同时,也产生了显著的跨境环境影响转移。传统仅从国家或产业层面评估国际贸易中单一环境要素的隐含流已远无法满足国际谈判与博弈中的精细化决策要求。本文以铜资源为例,应用生命周期评价方法构建了产品级、多环境要素的国际贸易环境影响及隐含流核算体系,选取了2018年6种铜资源产品的国际贸易数据,核算了铜资源产品在国际贸易中对各国带来的环境影响变化及在各国之间形成的多环境要素隐含流。分析发现:①不同资源产品在生产加工过程的环境影响类别、国际贸易带来的环境影响变化和所形成的隐含流规律等方面均具有较大差异。②铜资源产品的国际贸易带来了全球环境影响的显著增加,其中,约97%来源于铜矿、粗铜、精炼铜等原材料产品的贸易,主要流向原料国,其余3%的贸易环境影响增加来源于铜废料的国际贸易,主要由中国等发展中国家承担;③总体上,在铜资源的国际贸易中主要形成了“发达国家→中、印等发展中国家→其他发展中国家”的全球环境影响转移链条。根据研究所得结论,建议在资源产品国际贸易谈判博弈和环境政策制定中,应综合考虑多环境要素,并结合各国经济发展水平对不同资源产品予以精细的差别化管理。
邸敬涵, 温宗国. 资源产品贸易的环境影响及隐含环境流分析——以铜资源为例[J]. 资源科学, 2021, 43(3): 612-625.
DI Jinghan, WEN Zongguo. Environmental impacts and embodied environmental flows of the international trade of resource products: A case study of copper[J]. Resources Science, 2021, 43(3): 612-625.
表1
环境影响潜值标准化基准因子及权重"
环境影响潜值类别 | 2000年全球均值 | 单位 | 权重 | |
---|---|---|---|---|
非生物性资源耗损(ADP) | 元素 | 3.61E+08 | kg Sb eq./yr | 6.4 |
化石燃料 | 3.80E+14 | MJ/yr | 7.0 | |
全球变暖(GWP) | 4.22E+13 | kg CO2 eq./yr | 6.1 | |
人体毒性(HTP) | 2.58E+12 | kg 1,4-DCB eq./yr | 6.6 | |
生态毒性(ETP) | 淡水生态毒性(FAETP) | 2.36E+12 | kg 1,4-DCB eq./yr | 6.8 |
海洋生态毒性(MAETP) | 1.95E+14 | kg 1,4-DCB eq./yr | 9.3 | |
陆地生态毒性(TETP) | 1.09E+12 | kg 1,4-DCB eq./yr | 7.1 | |
臭氧层耗损(ODP) | 2.27E+08 | kg CFC eq./yr | 6.8 | |
光化学效应(POCP) | 3.68E+10 | kg C2H4 eq./yr | 6.2 | |
酸化(AP) | 2.39E+11 | kg SO2 eq./yr | 6.5 | |
富营养化(EP) | 1.58E+11 | kg PO43- eq./yr | 6.8 |
[1] | Wiedmann T. A first empirical comparison of energy footprints embodied in trade: MRIO versus Plum[J]. Ecological Economics, 2009,68(7):1975-1990. |
[2] | European Commission. A European Green Deal[EB/OL]. (2019-11-11) [2020-08-16]. https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en. |
[3] | Wiedmann T, Wilting H, Lutter F S, et al. Development of a Methodology for the Assessment of Global Environmental Impacts of Traded Goods and Services[R/OL]. (2009-08-07) [2020-06-22]. https://www.pbl.nl/sites/default/files/downloads/SCHO1009BRAM_e_e.pdf. |
[4] | Sato M. Product level embodied carbon flows in bilateral trade[J]. Ecological Economics, 2014,105:106-117. |
[5] | Sato M. Embodied carbon in trade: A survey of the empirical literature[J]. Journal of Economic Surveys, 2014,28(5):831-861. |
[6] |
Peters G P, Hertwich E G. CO2 embodied in international trade with implications for global climate policy[J]. Environmental Science & Technology, 2008,42(5):1401-1407.
doi: 10.1021/es072023k pmid: 18441780 |
[7] | Duarte R, Pinilla V, Serrano A. Factors driving embodied carbon in international trade: A multiregional input-output gravity model[J]. Economic Systems Research, 2018,30(4):545-566. |
[8] | 赵玉焕, 郑璐, 刘似臣. 全球价值链嵌入对中国出口贸易隐含碳的影响研究[J]. 国际贸易问题, 2021, (3):142-157. |
[ Zhao Y H, Zheng L, Liu S C. Impact of participating in global value chains on carbon emissions embodied in China’s exports[J]. Journal of International Trade, 2021, (3):142-157.] | |
[9] | Yang R R, Long R Y, Yue T, et al. Calculation of embodied energy in Sino-USA trade: 1997-2011[J]. Energy Policy, 2014,72:110-119. |
[10] | 余晓泓, 彭雨舸. 国际贸易中的隐含碳: 文献综述[J]. 技术经济, 2015,34(1):109-116. |
[ Yu X H, Peng Y G. Carbon embodied in international trade: Literature review[J]. Journal of Technology Economics, 2015,34(1):109-116.] | |
[11] | 韩梦瑶, 熊焦, 刘卫东. 中国跨境能源贸易及隐含能源流动对比: 以“一带一路”能源合作为例[J]. 自然资源学报, 2020,35(11):2674-2686. |
[ Han M Y, Xiong J, Liu W D. China’s cross-border energy relations between direct trade and embodied transfers: Based on "the Belt and Road" energy cooperation[J]. Journal of Natural Resources, 2020,35(11):2674-2686.] | |
[12] | Shepard J U, Pratson L F. Hybrid input-output analysis of embodied energy security[J]. Applied Energy, 2020,279:115806. |
[13] | 李永源, 张伟, 蒋洪强, 等. 基于MRIO模型的中国对外贸易隐含大气污染转移研究[J]. 中国环境科学, 2019,39(2):889-896. |
[ Li Y Y, Zhang W, Jiang H Q, et al. Transfers of air pollutant emissions embodied in China’s foreign trade based on MRIO model[J]. China Environmental Science, 2019,39(2):889-896.] | |
[14] |
Li C S, Liu B H. Air pollution embodied in China’s trade with the BR countries: Transfer pattern and environmental implication[J]. Journal of Cleaner Production, 2020, DOI: 10.1016/j.jclepro. 2019.119126.
pmid: 33078048 |
[15] | 陈炜明. 全球贸易及其结构变化对各国经济和资源环境影响研究[D]. 北京: 中国地质大学(北京), 2019. |
[ Chen W M. Study on the Impact of Global Trade and Its Structure Change on National Economy and Environment[D]. Beijing: China University of Geosciences (Beijing), 2019.] | |
[16] | 张弦, 陆双平. 聚焦新时代中国铜产业发展: 2019中国铜产业链发展高峰论坛召开[N/OL]. (2019-07-16) [2020-08-25]. https://paper.cnmn.com.cn/Content.aspx?id=150601&q=4281&v=1. |
[ Zhang X, Lu S P. Focus on China’s Copper Industrial Development in the New Era: The Convening of the Summit Forum of China’s Copper Industrial Chain Development in 2019[N/OL]. (2019-07-16) [2020-08-25]. https://paper.cnmn.com.cn/Content.aspx?id=150601&q=4281&v=1. | |
[17] | 智研咨询. 2020年疫情对中国铜行业发展的影响: 中国铜资源对外依存度高, 短期错配, 基本面强劲[N/OL]. (2020-06-16) [2020-07-03]. http://www.chyxx.com/industry/202006/874398.html. |
[ Intelligence Research Group. Impacts on China’s Copper Industrial Development from COVID-19 in 2020: High Foreign Dependence, Short-Term Mismatch, and Stong Fundementals[N/OL]. (2020-06-16) [2020-07-03]. http://www.chyxx.com/industry/202006/874398.html. | |
[18] | ISO. Environmental Management-Life Cycle Assessment-Principles and Framework: ISO 14040: 2006[S/OL]. (2006-07) [2020-06-23]. https://www.iso.org/standard/37456.html. |
[19] | Thinkstep. Description of the CML 2001 Method[R/OL]. (2006-07) [2020-11-28]. http://www.gabi-software.com/international/support/gabi/gabi-lcia-documentation/cml-2001/. |
[20] | CML-Department of Industrial Ecology. CML-IA Characterisation Factors[R/OL]. (2016-09-05) [2020-07-21]. https://www.universiteitleiden.nl/en/research/research-output/science/cml-ia-characterisation-factors. |
[21] | Thinkstep. ReCiPe[R/OL]. (2012-12) [2020-11-28]. http://www.gabi-software.com/international/support/gabi/gabi-lcia-documentation/recipe/. |
[22] | Thinkstep. Description of the TRACI Method[R/OL]. (2020-01) [2020-11-28]. http://www.gabi-software.com/international/support/gabi/gabi-lcia-documentation/traci/. |
[23] | Guinée J B, Gorrée M, Heijungs R, et al. Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards[M]. New York: Kluwer Academic Publishers, 2002. |
[24] | Thinkstep. Gabi 9.2 Software and Database[R]. Germany: Sphera, 2020. |
[25] | Ecoinvent Association. Ecoinvent Database[R/OL]. ( 2020-01) [2020-07-21]. https://www.ecoinvent.org/database/database.html. |
[26] | 赵波, 周遵波, 段绍甫. 中国铜业[M] 北京: 冶金工业出版社, 2014. |
[ Zhao B, Zhou Z B, Duan S F. China Copper Industry[M]. Beijing: Metallurgical Industry Press, 2014.] | |
[27] | International Copper Study Group. The World Copper Factbook 2020[R/OL]. (2020-09-21) [2020-10-08]. http://www.icsg.org/index.php/component/jdownloads/finish/170/3046. |
[28] | 刘志宏. 中国铜冶炼节能减排现状与发展[J]. 有色金属科学与工程, 2014,5(5):1-12. |
[ Liu Z H. Current situation and development of energy saving and waste reduction in Chinese copper smelting industry[J]. Nonferrous Metals Science and Engineering, 2014,5(5):1-12.] | |
[29] |
Glöser S, Soulier M, Tercero L. Dynamic analysis of global copper flows. global stocks, postconsumer material flows, recycling indicators, and uncertainty evaluation[J]. Environmental Science & Technology, 2013,47(12):6564-6572.
pmid: 23725041 |
[30] | Pfaff M, Glöser-Chahoud S, Chrubasik L, et al. Resource efficiency in the German copper cycle: Analysis of stock and flow dynamics resulting from different efficiency measures[J]. Resources, Conservation and Recycling, 2018,139:205-218. |
[31] | Soulier M, Pfaff M, Goldmann D, et al. The Chinese copper cycle: Tracing copper through the economy with dynamic substance flow and input-output analysis[J]. Journal of Cleaner Production, 2018,195:435-447. |
[32] | Wang J B, Ju Y Y, Wang M X, et al. Scenario analysis of the recycled copper supply in China considering the recycling efficiency rate and waste import regulations[J]. Resources, Conservation and Recycling, 2019,146:580-589. |
[33] | Zhang Y L, Sun M X, Hong J L, et al. Environmental footprint of aluminum production in China[J]. Journal of Cleaner Production, 2016,133:1242-1251. |
[34] |
Ciacci L, Fishman T, Elshkaki A, et al. Exploring future copper demand, recycling and associated greenhouse gas emissions in the EU-28[J]. Global Environmental Change, 2020, DOI: 10.1016/j.gloenvcha.2020.102093.
pmid: 29430082 |
[35] | Soulier M, Glöser-Chahoud S, Goldmann D, et al. Dynamic analysis of European copper flows[J]. Resources, Conservation and Recycling, 2018,129:143-152. |
[36] | Tanimoto A H, Gabarrell-Durany X, Villalba G, et al. Material flow accounting of the copper cycle in Brazil[J]. Resources, Conservation and Recycling, 2010,55(1):20-28. |
[37] | Van Beers D, Bertram M, Fuse K, et al. The contemporary African copper cycle: One year stocks and flows[J]. The Journal of the South African Institute of Mining and Metallurgy, 2003,103(3):147-162. |
[38] | Kapur A, Bertram M, Spatari S, et al. The contemporary copper cycle of Asia[J]. Journal of Material Cycles and Waste Management, 2003,5(2):147-162. |
[39] | 王冲, 杨坤彬, 华宏全. 废杂铜回收利用工艺技术现状及展望[J]. 再生资源与循环经济, 2011,4(8):28-32. |
[ Wang C, Yang K B, Hua H Q. Current status and prospect of recovery and utilization process for copper scrap[J]. Recyclable Resources and Circular Economy, 2011,4(8):28-32.] |
[1] | 翟一杰, 张天祚, 申晓旭, 马逍天, 洪静兰. 生命周期评价方法研究进展[J]. 资源科学, 2021, 43(3): 446-455. |
[2] | 张元林, 张上, 李金惠, 曾现来. 中国钢结构建筑的物质流分析[J]. 资源科学, 2021, 43(3): 546-555. |
[3] | 关伟, 赵湘宁, 许淑婷. 中国能源水足迹时空特征及其与水资源匹配关系[J]. 资源科学, 2019, 41(11): 2008-2019. |
[4] | 王钰乔, 濮超, 赵鑫, 王兴, 刘胜利, 张海林. 中国小麦、玉米碳足迹历史动态及未来趋势[J]. 资源科学, 2018, 40(9): 1800-1811. |
[5] | 姚成胜, 钱双双, 李政通, 梁龙武. 中国省际畜牧业碳排放测度及时空演化机制[J]. 资源科学, 2017, 39(4): 698-712. |
[6] | 王兴, 赵鑫, 王钰乔, 薛建福, 张海林. 中国水稻生产的碳足迹分析[J]. 资源科学, 2017, 39(4): 713-722. |
[7] | 张丹, 张卫峰. 低碳农业与农作物碳足迹核算研究述评[J]. 资源科学, 2016, 38(7): 1395-1405. |
[8] | 宋博, 穆月英. 设施蔬菜生产系统碳足迹研究——以北京市为例[J]. 资源科学, 2015, 37(1): 175-183. |
|