资源科学 ›› 2021, Vol. 43 ›› Issue (3): 546-555.doi: 10.18402/resci.2021.03.11
收稿日期:
2020-07-10
修回日期:
2021-03-01
出版日期:
2021-03-25
发布日期:
2021-05-25
通讯作者:
曾现来
作者简介:
张元林,男,山东临沂人,硕士,从事钢结构建筑研究。E-mail: yu_anlin_cool@126.com
基金资助:
ZHANG Yuanlin(), ZHANG Shang, LI Jinhui, ZENG Xianlai(
)
Received:
2020-07-10
Revised:
2021-03-01
Online:
2021-03-25
Published:
2021-05-25
Contact:
ZENG Xianlai
摘要:
钢结构建筑因自重较轻、施工方便成为主流的建筑类型,但过去对该产业评估研究较少,缺乏对其资源生产率及环境影响的充分认识。本文选择中国西部、东北和中部地区的15个钢结构建筑设施作为研究对象,利用物质流分析钢结构建筑物质流动过程中输入、输出物质种类和重量,结合钢结构建筑所产生的经济价值,核算其资源生产率,同时对钢结构建筑中钢铁的物质流全过程进行生命周期评价。结果表明:①生产过程中95%的钢铁得到利用,5%成为废钢铁,钢结构建筑中单位建筑面积资源消耗量从高到低排序为矿物、水、氧气、化石能源、生物质,其中东北地区钢结构建筑的矿物质消耗量最大,达到107 kg/m2;②根据钢结构建筑直接输入物质所占比例,西部地区、东北地区、中部地区钢结构建筑资源生产率分别约为692元/t、512元/t、610元/t;③钢结构生命周期对环境影响最大的阶段为钢铁生产阶段;如果考虑循环利用,其环境影响最大出现在钢结构加工阶段,且钢铁循环利用可显著降低钢结构产业的环境影响。依据以上研究结果,东北地区钢结构建筑资源生产效率最低,应提高其资源生产效率,大幅度促进循环利用,实现可持续发展。
张元林, 张上, 李金惠, 曾现来. 中国钢结构建筑的物质流分析[J]. 资源科学, 2021, 43(3): 546-555.
ZHANG Yuanlin, ZHANG Shang, LI Jinhui, ZENG Xianlai. Measuring material flow performance of China’s steel structure building[J]. Resources Science, 2021, 43(3): 546-555.
表1
中国15个钢结构建筑的实际数据"
区域 | 项目代号 | 面积/m2 | 经济利润/万元 | 资源消耗量/t | |||||
---|---|---|---|---|---|---|---|---|---|
化石能源 | 矿物 | 生物质 | 氧气 | 水 | 总和 | ||||
西部地区 | 1 | 2594 | 31.3 | 16.3 | 197.9 | 7.8 | 39.1 | 154.3 | 415.4 |
2 | 8880 | 69.3 | 50.3 | 430.7 | 15.6 | 120.7 | 399.5 | 1016.8 | |
3 | 3600 | 32.7 | 22.6 | 201.7 | 8.7 | 54.2 | 178.2 | 465.4 | |
4 | 3467 | 25.5 | 12.4 | 156.6 | 5.5 | 29.7 | 154.2 | 358.4 | |
5 | 1387 | 24.3 | 17.3 | 196.5 | 7.5 | 41.5 | 136.1 | 398.9 | |
东北地区 | 6 | 6715 | 93.1 | 59.4 | 608.3 | 16.7 | 142.6 | 539.9 | 1366.9 |
7 | 1080 | 13.5 | 5.9 | 157.2 | 3.8 | 14.2 | 177.9 | 359.0 | |
8 | 2520 | 32.4 | 7.6 | 249.1 | 8.1 | 18.2 | 350.5 | 633.5 | |
9 | 1050 | 10.1 | 5.6 | 139.5 | 2.6 | 13.4 | 156.7 | 317.8 | |
10 | 4620 | 57.2 | 28.1 | 293.6 | 11.1 | 69.8 | 444.7 | 847.3 | |
中部地区 | 11 | 4831 | 60.9 | 47.3 | 369.8 | 13.5 | 113.5 | 336.4 | 880.5 |
12 | 3730 | 42.8 | 29.6 | 279.3 | 9.2 | 71.1 | 211.0 | 600.2 | |
13 | 4550 | 58.5 | 32.5 | 344.7 | 11.2 | 78.0 | 228.6 | 695.0 | |
14 | 7000 | 78.7 | 53.7 | 520.0 | 15.2 | 128.8 | 369.9 | 1087.6 | |
15 | 1795 | 1.7 | 8.5 | 93.1 | 7.6 | 20.4 | 83.6 | 213.2 |
[1] | 曹体礼, 刘而继, 袁祥明. 钢结构建筑的应用及在我国的发展趋势[J]. 中国住宅设施, 2018, (5):29-30. |
[ Cao T L, Liu E J, Yuan X M. Application and development in China of steel structue building[J]. China Housing Facilities, 2018, (5):29-30.] | |
[2] | 于竞宇, 张龙雨, 王静峰, 等. 钢结构建筑产业化政策分析与推进机制研究[J]. 建筑钢结构进展, 2018,20(2):1-12. |
[ Yu J Y, Zhang L Y, Wang J F, et al. Study on the policy analysis and promotion mechanism of steel structure construction industrialization[J]. Progress in Steel Building Structures, 2018,20(2):1-12.] | |
[3] | Yu Y Q, Zhu F Q, Wang Z. Review of the promotion and application of steel structures in construction[J]. Steel Construction, 2020,35(1):59-69. |
[4] | 黄宁宁, 陈定江, 王韬, 等. 中国汽车行业钢铁物质流代谢研究[J]. 环境科学与技术, 2013,36(2):179-183. |
[ Huang N N, Chen D J, Wang T, et al. Iron and steel material flow metabolism in China automobile industry[J]. Environmental Science & Technology, 2013,36(2):179-183.] | |
[5] | 韩中奎, 文博杰, 代涛, 等. 京津冀地区房屋建筑中钢铁存量研究及驱动力分析[J]. 中国矿业, 2018,27(11):50-55. |
[ Han Z K, Wen B J, Dai T, et al. Analysis of steel stock and driving force in housing construction in Beijing-Tianjin-Hebei region[J]. China Mining Magazine, 2018,27(11):50-55.] | |
[6] | Zhu Y X, Syndergaard K, Cooper D R. Mapping the annual flow of steel in the United States[J]. Environmental Science & Technology, 2019,53(19):11260-11268. |
[7] |
Flint I P, Serrenho A C, Lupton R C, et al. Material flow analysis with multiple material characteristics to assess the potential for flat steel prompt scrap prevention and diversion without remelting[J]. Environmental Science & Technology, 2020,54(4):2459-2466.
pmid: 31961662 |
[8] | Guo H, Zhang T Z. Sinks of steel in china: Addition to in-use stock, export and loss[J]. Frontiers of Environmental Science & Engineering, 2016,10:141-149. |
[9] | 李新, 任强, 罗胤达, 等. 基于物质流分析的中国机械行业铁资源代谢过程研究[J]. 资源科学, 2018,40(12):2329-2340. |
[ Li X, Ren Q, Luo Y D, et al. Metabolic process of mechanical products iron resources based on material flow analysis in China[J]. Resources Science, 2018,40(12):2329-2340.] | |
[10] | 张艳飞, 陈其慎, 于汶加, 等. 2015-2040年全球铁矿石供需趋势分析[J]. 资源科学, 2015,37(5):921-932. |
[ Zhang Y F, Chen Q S, Yu W J, et al. Global iron ore supply and demand trend analysis, 2015-2040[J]. Resources Science, 2015,37(5):921-932.] | |
[11] | 戴铁军, 陆钟武. 钢铁生产流程铁资源效率与工序铁资源效率关系的分析[J]. 金属学报, 2006,42(3):280-284. |
[ Dai T J, Lu Z W. Analysis of the relationship between iron resource efficiencies in steel production process and unit process[J]. Acta Metallurgica Sinica, 2006,42(3):280-284.] | |
[12] | 张娟, 郑一, 王学军, 等. 基于资源产出率指标分解的企业循环经济研究: 以钢铁行业为例[J]. 资源科学, 2016,38(1):119-125. |
[ Zhang J, Zheng Y, Wang X J, et al. Circular-economic development of individual Chinese iron and steel companies by decomposing resource productivities indictors[J]. Resources Science, 2016,38(1):119-125.] | |
[13] | 王腊芳, 张莉沙. 钢铁生产过程环境影响的全生命周期评价[J]. 中国人口·资源与环境, 2012,22(S2):239-244. |
[ Wang L F, Zhang L S. Life cycle assessment of environmental impacts for the whole steel production process[J]. China Population, Resources and Environment, 2012,22(S2):239-244.] | |
[14] | 韩中奎, 文博杰, 代涛, 等. 中国房屋建筑中钢铁存量的时空变化[J]. 资源科学, 2018,40(12):2351-2359. |
[ Han Z K, Wen B J, Dai T, et al. Temporal and spatial changes of iron stocks in China’s housing construction[J]. Resources Science, 2018,40(12):2351-2359.] | |
[15] | Minami F, Takashima Y, Ohata M, et al. Fracture assessment procedure developed in japan for steel structures under seismic conditions[J]. Engineering Fracture Mechanics, 2018,187:142-164. |
[16] | Mirza O, Shill S K, Mashiri F, et al. Behaviour of retrofitted steel structures using cost effective retrofitting techniques[J]. Journal of Constructional Steel Research, 2017,131:38-50. |
[17] | Salam S S A, El-kady M S. Foundations for low cost buildings[J]. Journal of Computational Design and Engineering, 2017,4(2):143-149. |
[18] | 黄长清, 文长法. 钢结构经济性焊接分析[J]. 石油工程建设, 2009,35(4):43-45. |
[ Huang C Q, Wen C F. Economic analysis on steel structure welding[J]. Petroleum Engineering Construction, 2009,35(4):43-45.] | |
[19] | 刘理才, 田莉. 钢结构工程中如何通过深化设计进行成本控制[J]. 低碳世界, 2013, (12):302-303. |
[ Liu L C, Tian L. How to carry out cost control through deepening design in steel structure engineering[J]. Low Cabon World, 2013, (12):302-303.] | |
[20] | 黄聪. 门式刚架钢结构柱网布置的经济性研究[J]. 山西建筑, 2014,40(19):52-53. |
[ Huang C. Economic research of portal frame steel structure column grid layout[J]. Shanxi Architecture, 2014,40(19):52-53.] | |
[21] | 贤慧. Ⅱ型弹条扣件紧固螺栓新型防松机构技术研究[J]. 科技与创新, 2014, (7):16-17. |
[ Xian H. Technology research on locking mechanism for Ⅱ elastic fasteners[J]. Science and Technology & Innovation, 2014, (7):16-17.] | |
[22] | Zhao P, He X. Research on dynamic data monitoring of marine bridge steel structure building information based on BIM model[J]. Arabian Journal of Geosciences, 2021,14:305. |
[23] | 邱乾林. 生命周期下钢结构与混凝土结构建筑环境性能的比较分析[J]. 江西建材, 2017, (2):35-39. |
[ Qiu Q L. Comparative analysis of the environmental performance of steel structure and concrete structure under life cycle[J]. Jiangxi Building Materials, 2017, (2):35-39.] | |
[24] | 苏醒, 张旭, 黄志甲. 基于生命周期评价的钢结构与混凝土结构建筑环境性能比较[J]. 环境工程, 2008,26(S1):290-294. |
[ Su X, Zhang X, Huang Z J. Comparison of steel-concrete buildings on environmental performance based on LCAA[J]. Environmental Engineering, 2008,26(S1):290-294.] | |
[25] | 刘富成, 赵薇, 王天华, 等. 建筑用岩棉生产的生命周期评价及节能减排分析[J]. 新型建筑材料, 2016,43(5):98-102. |
[ Liu F C, Zhao W, Wang T H, et al. LCA and energy saving & emission reduction analysis of building rock wool production[J]. New Building Materials, 2016,43(5):98-102.] | |
[26] | 曾现来, 李金惠. 城市矿山开发及其资源调控: 特征、可持续性和开发机理[J]. 中国科学: 地球科学, 2018,48(3):288-298. |
[ Zeng X L, Li J H. Urban mining and its resources control: Characteristics, sustainability, and extraction mechanism[J]. Scientia Sinica (Terrae), 2018,48(3):288-298.] | |
[27] | 张普伟, 贾广社, 何长全, 等. 中国建筑业碳生产率变化驱动因素[J]. 资源科学, 2019,41(7):1274-1285. |
[ Zhang P W, Jia G S, He C Q, et al. Driving factors of carbon productivity changes in China’s construction industry[J]. Resources Science, 2019,41(7):1274-1285.] | |
[28] | Kovanda J, van de Sand I, Schutz H, Bringezu S. Economy-wide material flow indicators: Overall framework, purposes and uses and comparison of material use and resource intensity of the Czech Republic, Germany and the EU-15[J]. Ecological Indicators, 2012,17:88-98. |
[29] |
Hellweg S, Milà i Canals L. Emerging approaches, challenges and opportunities in life cycle assessment[J]. Science, 2014,344(6188):1109-1113.
pmid: 24904154 |
[30] | 王侠, 任宏. 不同结构住宅建筑生命周期环境影响比较[J]. 建筑, 2016, (11):65-67. |
[ Wang X, Ren H. Comparison of environmental impacts of different structure residential buildings’ life cycle[J]. Construction and Architectureuuyt1, 2016, (11):65-67.] | |
[31] | Wang P, Li W, Kara S. Cradle-to-cradle modeling of the future steel flow in China[J]. Resources Conservation and Recycling, 2017,117:45-57. |
[32] |
Guo Y H, Qie J M, Zhang C X, et al. Material flow analysis of zinc during the manufacturing process in integrated steel mills in China[J]. Journal of Industrial Ecology, 2021, DOI: 10.1111/jiec.13096.
pmid: 32336907 |
[33] |
Olivetti E A, Cullen J M. Toward a sustainable materials system[J]. Science, 2018,360(6396):1396-1398.
pmid: 29954965 |
[1] | 翟一杰, 张天祚, 申晓旭, 马逍天, 洪静兰. 生命周期评价方法研究进展[J]. 资源科学, 2021, 43(3): 446-455. |
[2] | 盛虎, 刘欣, 芦昕雨, 廖宇星, 袁增伟. 复杂物质循环过程模拟方法与平台实现——以畜禽养殖系统磷循环为例[J]. 资源科学, 2021, 43(3): 465-476. |
[3] | 宋璐璐, 曹植, 代敏. 中国乘用车物质代谢与碳减排策略[J]. 资源科学, 2021, 43(3): 501-512. |
[4] | 刘立涛, 赵慧兰, 刘晓洁, 代涛, 刘刚. 1995—2015年美国钴物质流演变[J]. 资源科学, 2021, 43(3): 524-534. |
[5] | 李新, 康欣宇, 林靖, 陈璐, 王敏晰. 中国铅资源流动及其循环效率[J]. 资源科学, 2021, 43(3): 535-545. |
[6] | 汪中才, 宋庆彬, 蔡铠涵, 李金惠. 家用空调制冷剂物质流动态演化特征——以中国澳门特别行政区为例[J]. 资源科学, 2021, 43(3): 556-566. |
[7] | 王敏晰, 马宇, 刘威, 王亚杰, 李新. 生态文明建设与资源循环利用耦合关系[J]. 资源科学, 2021, 43(3): 577-587. |
[8] | 刘妍心, 李华姣, 安海忠, 管建和, 刘宁, 韩晓丹, 李超, 史江兰. 基于“废钢回收”的中国钢铁产业链资源-经济-环境动态耦合[J]. 资源科学, 2021, 43(3): 588-600. |
[9] | 邸敬涵, 温宗国. 资源产品贸易的环境影响及隐含环境流分析——以铜资源为例[J]. 资源科学, 2021, 43(3): 612-625. |
[10] | 郝敏, 陈伟强, 马梓洁, 张超, 甘建邦. 2000—2015年中国铜废碎料贸易及效益风险分析[J]. 资源科学, 2020, 42(8): 1515-1526. |
[11] | 栾晓玉, 刘巍, 崔兆杰, 刘业业, 陈月冬, 卢盛, 王玉标. 基于物质流分析的中国塑料资源代谢研究[J]. 资源科学, 2020, 42(2): 372-382. |
[12] | 孙思奥, 汤秋鸿. 黄河流域水资源利用时空演变特征及驱动要素[J]. 资源科学, 2020, 42(12): 2261-2273. |
[13] | 孔子科, 刘晶茹, 孙锌. 中国城镇家庭乘用车物质代谢分析[J]. 资源科学, 2019, 41(4): 681-688. |
[14] | 关伟, 赵湘宁, 许淑婷. 中国能源水足迹时空特征及其与水资源匹配关系[J]. 资源科学, 2019, 41(11): 2008-2019. |
[15] | 王钰乔, 濮超, 赵鑫, 王兴, 刘胜利, 张海林. 中国小麦、玉米碳足迹历史动态及未来趋势[J]. 资源科学, 2018, 40(9): 1800-1811. |
|