资源科学 ›› 2021, Vol. 43 ›› Issue (3): 524-534.doi: 10.18402/resci.2021.03.09
刘立涛1(), 赵慧兰2, 刘晓洁1, 代涛3,4, 刘刚1,5(
)
收稿日期:
2020-10-25
修回日期:
2021-03-11
出版日期:
2021-03-25
发布日期:
2021-05-25
通讯作者:
刘刚
作者简介:
刘立涛,博士,助理研究员,主要研究方向为能矿资源流动与管理。E-mail: liult@igsnrr.ac.cn
基金资助:
LIU Litao1(), ZHAO Huilan2, LIU Xiaojie1, DAI Tao3,4, LIU Gang1,5(
)
Received:
2020-10-25
Revised:
2021-03-11
Online:
2021-03-25
Published:
2021-05-25
Contact:
LIU Gang
摘要:
钴作为最重要的汽车电池材料之一,其供需平衡和物质流对全球主要国家交通绿色转型和应对气候变化至关重要。为揭示区域钴物质流的变化趋势,刻画其供应格局,本文以典型发达国家美国为例,构建了基于全生命周期贸易关联的钴物质流分析框架,开展了1995—2015年美国钴物质流量、存量和供应格局分析。研究显示:①从流量分析来看,美国采矿及精炼阶段由国内供应为主导向进口为主导转变,一次资源开采量呈递减趋势,二次资源利用规模逐渐扩大;制造阶段以高温合金和其他为主导;表观消费实现了从高温合金驱动向电池驱动的转变;含钴废弃物从其他与高温合金占主导向电子产品电池占主导转变。②从存量分析来看,终端消费品在用存量实现了从高温合金和其他驱动向高温合金和电池驱动的转换。③无论从流量还是存量来看,电动汽车电池表观消费及在用存量的总量占比在2011—2015年均增长了15%,需引起特别关注。④从供应格局来看,过去20年,美国净进口规模前3的含钴产品依次为材料、电子产品电池和电动汽车电池;材料进口80%依赖欧洲的供应格局转变为亚洲占主导(35%),美洲(27%)和欧洲(22%)为辅,供应来源日趋多元化;电池供应则进一步向亚洲集中,源自亚洲的电动汽车电池和电子产品电池进口占比分别从1995年的82%和57%提升至2015年的96%和91%。截至2015年,中国已经成为了美国最大的材料和电子产品电池供应国,第二大电动汽车电池供应国;中国供应了美国31%的材料,74%的电子产品电池和36%的电动汽车电池。在中美贸易摩擦加剧背景下,“美中”脱钩对全球、中国以及美国钴物质流的作用和影响值得深入研究和高度重视。厘清近20年来美国钴物质流变化趋势,有助于研判美国钴产业链演变态势,为进一步完善中国战略性关键矿产管理体制机制,制定适应性政策提供支撑。
刘立涛, 赵慧兰, 刘晓洁, 代涛, 刘刚. 1995—2015年美国钴物质流演变[J]. 资源科学, 2021, 43(3): 524-534.
LIU Litao, ZHAO Huilan, LIU Xiaojie, DAI Tao, LIU Gang. Cobalt material flow in the United States from 1995 to 2015[J]. Resources Science, 2021, 43(3): 524-534.
表1
全生命周期钴贸易清单及相关参数"
大类名称 | 小类名称 | 钴含量/% | 寿命/年 | 回收率/% | |
---|---|---|---|---|---|
1995—2000年 | 2001—2015年 | ||||
矿石 | 铜矿石 | 0.15 | - | - | |
镍矿石 | 0.07 | - | - | ||
钴矿石 | 7.60 | - | - | ||
原材料 | 氧化钴及氢氧化钴 | 72.00 | - | - | |
氯化钴 | 7.20 | - | - | ||
硫酸钴 | 6.00 | - | - | ||
碳酸钴 | 13.50 | - | - | ||
醋酸钴 | 6.90 | - | - | ||
镍钴金属及其中间制品 | 0.59~20.00 | - | - | ||
终端产品 | 电动汽车电池 | 0.03~6.85 | 8.0 | 70.0 | 70.0 |
电子产品电池 | 0.02~6.85 | 2.5 | 5.0 | 10.0 | |
高温合金 | 0.13~11.00 | 5.0 | 45.0 | 40.0 | |
硬质合金 | 0.15 | 1.0 | 25.0 | 25.0 | |
磁性合金 | 0.02~0.90 | 5.0 | 10.0 | 10.0 | |
催化剂 | 0.45 | 2.0 | 5.0 | 5.0 | |
陶瓷和色釉料 | 0.10~0.35 | 1.0 | 0.0 | 0.0 | |
其他 | 0.02~5.00 | 1.0 | 0.0 | 0.0 | |
废弃物 | 含钴废弃物 | 12.00~32.00 | - | - |
[1] | U.S.Geological Survey. National Minerals Information Center: Cobalt Statistics and Information[EB/OL]. (2018-01-01) [2020-10-30]. https://www.usgs.gov/centers/nmic/cobalt-statistics-and-information. |
[2] | 王京, 石香江, 王寿成, 等. 未来中国钴资源需求预测[J]. 中国国土资源经济, 2019,32(10):28-33. |
[ Wang J, Shi X J, Wang S C, et al. Demand forecast of China’s cobalt resource in the future[J]. Natural Resource Economics of China, 2019,32(10):28-33.] | |
[3] | Gabler R C, Riley W D. A Cobalt Commodity Recycling Flow Model[R/OL]. (1990-01-01) [2020-11-02].https://books.google.com.hk/books/about/A_Cobalt_Commodity_Recycling_Flow_Model.html?id=dId64X96UigC&printsec=frontcover&source=kp_read_button&redir_esc=y#v=onepage&q&f=false |
[4] | Brunner P H, Rechberger H. Practical handbook of material flow analysis[J]. The International Journal of Life Cycle Assessment, 2004,9(5):337-338. |
[5] |
Wang T, Müller D B, Graedel T E. Forging the anthropogenic iron cycle[J]. Environmental Science & Technology, 2007,41(14):5120-5129.
pmid: 17711233 |
[6] | Chen W Q, Shi L. Analysis of aluminum stocks and flows in mainland China from 1950 to 2009: Exploring the dynamics driving the rapid increase in China’s aluminum production[J]. Resource Conservation and Recycling, 2012,65:18-28. |
[7] |
Cullen J M, Allwood J M. Mapping the global flow of aluminum: From liquid aluminum to end use goods[J]. Environmental Science & Technology, 2013,47(7):3057-3064.
doi: 10.1021/es304256s pmid: 23438734 |
[8] | Liu G, Müller D B. Mapping the global journey of anthropogenic aluminum: A trade-linked multilevel material flow analysis[J]. Environmental Science & Technology, 2013,47(20):11873-11881. |
[9] |
Graedel T E, van Beers D, Bertram M, et al. Multilevel cycle of anthropogenic copper[J]. Environmental Science & Technology, 2004,38(4):1242-1252.
pmid: 14998044 |
[10] | Graedel T E, van Beers D, Bertram M, et al. The multilevel cycle of anthropogenic zinc[J]. Journal of Industrial Ecology, 2005,9(3):67-90. |
[11] |
Johnson J, Jirikowic J, Bertram M, et al. Contemporary anthropogenic silver cycle: A multilevel analysis[J]. Environmental Science & Technology, 2005,39(12):4655-4665.
pmid: 16047806 |
[12] | Johnson J, Schewel L, Graedel T E. The contemporary anthropogenic chromium cycle[J]. Environmental Science & Technology, 2006,40(22):7060-7069. |
[13] |
Reck B K, Müller D B, Rostkowski K, et al. Anthropogenic nickel cycle: Insights into use, trade, and recycling[J]. Environmental Science & Technology, 2008,42(9):3394-3400.
doi: 10.1021/es072108l pmid: 18522124 |
[14] | Mao J S, Dong J, Graedel T E. The multilevel cycle of anthropogenic lead: II. results and discussion[J]. Resource Conservation and Recycling[J]. 2008,52(8-9):1050-1057. |
[15] | Baccini P, Brunner P H. Metabolism of the Anthroposphere: Analysis, Evaluation, Design[M]. Massachusetts: The MIT Press, 2012. |
[16] | Shedd K B. The Materials Flow of Cobalt in the United States[R/OL] (1993-01-01)[2020-12-02] https://pubs.usgs.gov/usbmic/ic-9350/ic-9350.pdf |
[17] |
Harper E M, Kavlak G, Graedel T E. Tracking the Metal of the Goblins: Cobalt’s Cycle of Use[J]. Environmental Science & Technology, 2012,46(2):1079-1086.
pmid: 22142288 |
[18] | 文博杰, 韩中奎. 2015年中国钴物质流研究[J]. 中国矿业, 2018,27(1):73-77. |
[ Wen B J, Han Z K. Substance flow analysis of cobalt in China in 2015[J]. China Mining Magazine, 2018,27(1):73-77.] | |
[19] | Asari M, Sakai SI. Li-ion battery recycling and cobalt flow analysis in Japan[J]. Resources, Conservation and Recycling, 2013,81:52-59. |
[20] | Zeng X L, Li J H. On the sustainability of cobalt utilization in China[J]. Resources Conservation and Recycling, 2015,104:12-18. |
[21] | Chen Z Y, Zhang L G, Xu Z M. Tracking and quantifying the cobalt flows in mainland China during 1994-2016: Insights into use, trade and prospective demand[J]. Science of The Total Environment, 2019,672:752-762. |
[22] |
Nansai K, Nakajima K, Kagawa S, et al. Global flows of critical metals necessary for low-carbon technologies: The case of neodymium, cobalt, and platinum[J]. Environmental Science & Technology, 2014,48(3):1391-1400.
doi: 10.1021/es4033452 pmid: 24387330 |
[23] | Sun X, Hao H, Liu Z W, et al. Tracing global cobalt flow: 1995-2015[J]. Resources, Conservation and Recycling, 2019,149:45-55. |
[24] | Committee on Earth Resources, Committee on Critical Mineral Impacts of the U.S. Economy, Board on Earth Sciences and Resources, Division on Earth and Life Studies, National Research Council. Minerals, Critical Minerals, and the U.S. Economy[M]. Washington D C: National Academies Press, 2008. |
[25] | National Science and Technology Council. Assessment of Critical Minerals: Updated Application of Screening Methodology [R/OL]. (2018-02-10) [2020-12-20]. https://www.whitehouse.gov/wp-content/uploads/2018/02/Assessment-of-Critical-Minerals-Update-2018.pdf. |
[26] | Department of the Interior. Final List of Critical Minerals 2018[R/OL]. (2018-05-18) [2020-12-20]. https://www.govinfo.gov/content/pkg/FR-2018-05-18/pdf/2018-10667.pdf. |
[27] | The Department of Defense. Executive Order 13806: Assessing and Strengthening the Manufacturing and Defense Industrial Base and Supply Chain Resiliency of the United States[R/OL]. (2018-10-31) [2020-12-20]. https://www.businessdefense.gov/News/News-Display/Article/1676687/executive-order-13806-report-released/. |
[28] | U.S. Department of Energy. Critical Materials Strategy[R/OL]. (2010-12) [2020-12-20]. https://www.energy.gov/sites/prod/files/edg/news/documents/criticalmaterialsstrategy.pdf. |
[29] | Trump D J. Executive Order 13817: A Federal Strategy to Ensure Secure and Reliable Supplies of Critical Minerals[R/OL]. (2017-12-20) [2020-12-20]. https://www.presidency.ucsb.edu/documents/executive-order-13817-federal-strategy-ensure-secure-and-reliable-supplies-critical. |
[30] | Bureau of Energy Resources (ENR). Energy Resource Governance Initiative[R/OL]. (2019-06-20) [2020-12-20]. https://www.state.gov/wp-content/uploads/2019/06/Energy-Resource-Governance-Initiative-ERGI-Fact-Sheet.pdf. |
[31] | The White House. Executive Order on Addressing the Threat to the Domestic Supply Chain from Reliance on Critical Minerals from Foreign Adversaries[EB/OL]. (2020-09-30) [2020-12-20].https://www.whitehouse.gov/presidential-actions/executive-order-addressing-threat-domestic-supply-chain-reliance-critical-minerals-foreign-adversaries/. |
[32] | The White House. Executive Order on America’s Supply Chains[EB/OL]. (2021-02-24) [2021-03-20]. https://www.whitehouse.gov/briefing-room/presidential-actions/2021/02/24/executive-order-on-americas-supply-chains/. |
[33] | Sommer P, Rotter V S, Ueberschaar M. Battery related cobalt and REE flows in WEEE treatment[J]. Waste Management, 2015,45:298-305. |
[34] | Melo M T. Statistical analysis of metal scrap generation: The case of aluminium in Germany[J]. Resources Conservation and Recycling, 1999,26(2):91-113. |
[35] |
Pauliuk S, Wang T, Müller D B. Moving toward the circular economy: The role of stocks in the Chinese steel cycle[J]. Environmental Science & Technology, 2012,46(1):148-154.
pmid: 22091699 |
[36] | United Nations Comtrade. International Trade Statistics Database[DB/OL]. (2018-03-30) [2020-11-15]. https://comtrade.un.org/. |
[37] | 陈伟强, 石磊, 常皛宇, 等. 1991年-2007年中国铝物质流分析(I): 全生命周期进出口核算及其政策启示[J]. 资源科学, 2009,31(11):1887-1897. |
[ Chen W Q, Shi L, Chang X Y, et al. Substance flow analysis of aluminium in China for 1991-2007(I): Trade of aluminium from a perspective of life cycle and its policy implications[J]. Resources Science, 2009,31(11):1887-1897.] | |
[38] | 陈伟强, 石磊, 钱易. 1991年-2007年中国铝物质流分析(Ⅱ): 全生命周期损失估算及其政策启示[J]. 资源科学, 2009,31(12):2120-2129. |
[ Chen W Q, Shi L, Qian Y. Substance flow analysis of aluminium in China for 1991-2007(II): Quantity Loss of aluminium from a perspective of life cycle and its policy implications[J]. Resources Science, 2009,31(12):2120-2129.] | |
[39] | 贾冯睿, 郎晨, 刘广鑫, 等. 基于物质流分析的中国金属铜资源生态效率研究[J]. 资源科学, 2018,40(9):1706-1715. |
[ Jia F R, Lang C, Liu G X, et al. Assessment of copper resources ecological efficiency based on material flow analysis in China[J]. Resources Science, 2018,40(9):1706-1715.] | |
[40] | United Nations Environment Programme(UNEP), International Resource Panel(IRP). Recycling Rates of Metals:A Status Report[R/OL]. (2015-01-01) [2020-12-20]. https://mmta.co.uk/wp-content/uploads/2015/01/UNEP-Report-Recycling-rates-of-metals-2011.pdf. |
[41] | Industrial Ecology Freiburg. CircularSankey[R/OL]. (2017-01-01) [2020-12-20]. http://www.visualisation.industrialecology.uni-freiburg.de/. |
[42] | 赵亚博, 刘晓凤, 葛岳静. “一带一路”沿线国家油气资源分布格局及其与中国合作中的相互依赖关系[J]. 地理研究, 2017,36(12):2305-2320. |
[ Zhao Y B, Liu X F, Ge Y J. Analysis of the oil and gas resource distribution pattern along the Belt and Road and the interdependence relationship with China[J]. Geographical Research, 2017,36(12):2305-2320.] |
[1] | 盛虎, 刘欣, 芦昕雨, 廖宇星, 袁增伟. 复杂物质循环过程模拟方法与平台实现——以畜禽养殖系统磷循环为例[J]. 资源科学, 2021, 43(3): 465-476. |
[2] | 宋璐璐, 曹植, 代敏. 中国乘用车物质代谢与碳减排策略[J]. 资源科学, 2021, 43(3): 501-512. |
[3] | 李新, 康欣宇, 林靖, 陈璐, 王敏晰. 中国铅资源流动及其循环效率[J]. 资源科学, 2021, 43(3): 535-545. |
[4] | 张元林, 张上, 李金惠, 曾现来. 中国钢结构建筑的物质流分析[J]. 资源科学, 2021, 43(3): 546-555. |
[5] | 汪中才, 宋庆彬, 蔡铠涵, 李金惠. 家用空调制冷剂物质流动态演化特征——以中国澳门特别行政区为例[J]. 资源科学, 2021, 43(3): 556-566. |
[6] | 王敏晰, 马宇, 刘威, 王亚杰, 李新. 生态文明建设与资源循环利用耦合关系[J]. 资源科学, 2021, 43(3): 577-587. |
[7] | 郝敏, 陈伟强, 马梓洁, 张超, 甘建邦. 2000—2015年中国铜废碎料贸易及效益风险分析[J]. 资源科学, 2020, 42(8): 1515-1526. |
[8] | 栾晓玉, 刘巍, 崔兆杰, 刘业业, 陈月冬, 卢盛, 王玉标. 基于物质流分析的中国塑料资源代谢研究[J]. 资源科学, 2020, 42(2): 372-382. |
[9] | 王温鑫, 金晓斌, 杨晓艳, 项晓敏, 刘晶, 周寅康. 基于社会网络视角的土地整治重大项目实施风险识别与评价方法[J]. 资源科学, 2018, 40(6): 1138-1149. |
[10] | 吴明, 姜国强, 贾冯睿, 刘广鑫, 岳强. 基于物质流和生命周期分析的石油行业碳排放[J]. 资源科学, 2018, 40(6): 1287-1296. |
[11] | 李新, 任强, 罗胤达, 代涛, 文博杰, 王敏晰. 基于物质流分析的中国机械行业铁资源代谢过程研究[J]. 资源科学, 2018, 40(12): 2329-2340. |
[12] | 刘仟策, 刘立涛, 刘剑, 李胜功, 白晧, 刘刚. 重庆市钢铁存量估算及驱动力分析[J]. 资源科学, 2018, 40(12): 2341-2350. |
[13] | 韩中奎, 文博杰, 代涛, 李强峰, 王欢, 冯旭光. 中国房屋建筑中钢铁存量的时空变化[J]. 资源科学, 2018, 40(12): 2351-2359. |
[14] | 覃诚, 毕于运, 高春雨, 王亚静, 王红彦, 孙宁. 美国农业焚烧管理对中国秸秆禁烧管理的启示[J]. 资源科学, 2018, 40(12): 2382-2391. |
[15] | 杨晓, 刘爱民, 薛莉, 贾盼娜. 主要国家大豆压榨企业布局特征及其成因——以美国、巴西、中国为例[J]. 资源科学, 2018, 40(10): 1931-1942. |
|