资源科学 ›› 2021, Vol. 43 ›› Issue (3): 513-523.doi: 10.18402/resci.2021.03.08
收稿日期:
2020-10-09
修回日期:
2020-12-24
出版日期:
2021-03-25
发布日期:
2021-05-25
通讯作者:
袁增伟
作者简介:
张玲,女,山东日照人,博士,副教授,研究方向为资源环境管理研究。E-mail: zhangling01@126.com
基金资助:
ZHANG Ling1(), RAN Wenchun1, YUAN Zengwei2(
)
Received:
2020-10-09
Revised:
2020-12-24
Online:
2021-03-25
Published:
2021-05-25
Contact:
YUAN Zengwei
摘要:
铜是支撑人类经济和社会发展的重要金属之一,人类活动主导了地球上的铜资源循环过程。本文基于文献成果,运用元素流分析方法,从总体循环格局、关键铜流演变过程、社会存量时空变化和铜循环的未来可持续性4个方面,系统分析了1910—2018年人类圈铜循环格局的动态演变及未来趋势。结果表明:①在过去的一个世纪中,人类圈铜循环强度显著增加,累计约有821.8 Tg铜资源从岩石圈中进入人类圈,其中约一半的铜以社会存量形式存储在社会经济系统中,另有381.7 Tg在铜循环各个过程中被损耗;②从关键铜流的区域演变过程看,人类圈铜循环已从之前的美洲为主导,转变为20世纪90年代起至2018年的亚洲为绝对主导;③铜社会存量的空间格局特征表明铜矿资源经开发利用后,在人类圈进行了空间再分配,经济发达地区累积了更多社会存量;④截至2050年,人类圈铜资源的供给能否满足持续增长的需求仍存在一定不确定性。本文最后从矿铜和再生铜两方面给出了提高铜资源供给能力的主要方向。
张玲, 冉文春, 袁增伟. 人类圈铜循环格局演变及趋势[J]. 资源科学, 2021, 43(3): 513-523.
ZHANG Ling, RAN Wenchun, YUAN Zengwei. Evolution and prospects of anthropogenic copper cycles[J]. Resources Science, 2021, 43(3): 513-523.
[1] |
Rauch J N. Global spatial indexing of the human impact on Al, Cu, Fe, and Zn mobilization[J]. Environmental Science & Technology, 2010,44(15):5728-5734.
doi: 10.1021/es100813y pmid: 20666554 |
[2] | Klee R J, Graedel T E. Elemental cycles: A status report on human or natural dominance[J]. Annual Review of Environment and Resources, 2004,29:69-107. |
[3] |
Rauch J N, Graedel T E. Earth’s anthrobiogeochemical copper cycle[J]. Global Biogeochemical Cycles, 2007, DOI: 10.1029/2006GB002850.
pmid: 31007379 |
[4] | 陈之荣. 最新的地球圈层: 人类圈[J]. 地理研究, 1997,16(3):95-100. |
[ Chen Z R. Enwest geosphere: Anthroposphe[J]. Geographical Research, 1997,16(3):95-100.] | |
[5] | Landner L, Reuther R. Metals in Society and in the Environment[M]. New York: Kluwer Academic Publishers, 2006. |
[6] |
Rauch J N, Pacyna J M. Earth’s global Ag, Al, Cr, Cu, Fe, Ni, Pb, and Zn cycles[J]. Global Biogeochemical Cycles, 2009, DOI: 10.1029/2008GB003376.
pmid: 31007379 |
[7] | Rauch J N. The present understanding of Earth’s global anthrobiogeochemical metal cycles[J]. Mineral Economics, 2012,25(1):7-15. |
[8] | 张玲, 袁增伟, 毕军. 物质流分析方法及其研究进展[J]. 生态学报, 2009,29(11):6189-6198. |
[ Zhang L, Yuan Z W, Bi J. Substance flow analysis (SFA): A critical review[J]. Acta Ecologica Sinca, 2009,29(11):6189-6198.] | |
[9] | Graedel T E, Bertram M, Fuse K, et al. The contemporary European copper cycle: The characterization of technological copper cycles[J]. Ecological Economics, 2002,42(1):9-26. |
[ 10 Tanimoto A H, Durany X G, Villalba G, et al. Material flow accounting of the copper cycle in Brazil[J]. Resources Conservation & Recycling, 2010,55(1):20-28. | |
[11] | Kral U, Lin C Y, Kellner K, et al. The copper balance of cities[J]. Journal of Industrial Ecology, 2014,18(3):432-444. |
[12] | Zhang L, Yang J M, Cai Z J, et al. Analysis of copper flows in China from 1975 to 2010[J]. Science of the Total Environment, 2014,478:80-89. |
[13] | 贾冯睿, 郎晨, 刘广鑫, 等. 基于物质流分析的中国金属铜资源生态效率研究[J]. 资源科学, 2018,40(9):1706-1715. |
[ Jia F R, Lang C, Liu G X, et al. Assessment of copper resources ecological efficiency based on material flow analysis in China[J]. Resources Science, 2018,40(9):1706-1715.] | |
[14] | 温宗国, 季晓立. 中国铜资源代谢趋势及减量化措施[J]. 清华大学学报 (自然科学版), 2013,53(9):1283-1288. |
[ Wen Z G, Ji X L. Copper resource trends and use reduction measures in China[J]. Journal of Tsinghua University (Science and Technology), 2013,53(9):1283-1288.] | |
[15] | 王俊博, 范蕾, 李新, 等. 基于物质流方法的中国铜资源社会存量研究[J]. 资源科学, 2016,38(5):939-947. |
[ Wang J B, Fan L, Li X, et al. Research on the social stock of copper resources in China based on the material flow analysis[J]. Resources Science, 2016,38(5):939-947.] | |
[16] | Van Beers D, Graedel T E. Spatial characterisation of multi-level in-use copper and zinc stocks in Australia[J]. Journal of Cleaner Production, 2007,15(8):849-861. |
[17] | Terakado R, Takahashi K I, Daigo I, et al. In-use stock of copper in Japan estimated by bottom-up approach[J]. Journal of the Japan Institute of Metals, 2009,73(9):713-719. |
[18] |
Zhang L, Yang J M, Cai Z J, et al. Understanding the spatial and temporal patterns of copper in-use stocks in China[J]. Environmental Science & Technology, 2015,49(11):6430-6437.
pmid: 25927890 |
[19] | Zhang L, Cai Z J, Yang J M, et al. The future of copper in China: A perspective based on analysis of copper flows and stocks[J]. Science of the Total Environment, 2015,536:142-149. |
[20] | International Copper Study Group (ICSG). The World Copper Factbook 1999-2019[M]. Lisbon: ICSG, 1999-2019. |
[21] | Bertram M, Graedel T E, Rechberger H, et al. The contemporary European copper cycle: Waste management subsystem[J]. Ecological Economics, 2002,42(1):43-57. |
[22] |
Graedel T E, Van Beers D, Bertram M. Multilevel cycle of anthropogenic copper[J]. Environmental Science & Technology, 2004,38(4):1242-1252.
pmid: 14998044 |
[23] | Lifset R J, Eckelman M J, Harper E M, et al. Metal lost and found: Dissipative uses and releases of copper in the United States 1975-2000[J]. Science of the Total Environment, 2012,417:138-147. |
[24] |
Glöser S, Soulier M, Tercero L. Dynamic analysis of global copper flows. Global stocks, postconsumer material flows, recycling indicators, and uncertainty evaluation[J]. Environmental Science & Technology, 2013,47(12):6564-6572.
pmid: 23725041 |
[25] | Kapur A. The future of the red metal: Discards, energy, water, residues, and depletion[J]. Progress in Industrial Ecology An International Journal, 2006,3(3):209-236. |
[26] |
Rauch J N. Global mapping of Al, Cu, Fe, and Zn in-use stocks and in-ground resources[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009,106(45):18920-18925.
pmid: 19858486 |
[27] |
Graedel T E, Bertram M, Kapur A, et al. Exploratory data analysis of the multilevel anthropogenic copper cycle[J]. Environmental Science & Technology, 2004,38(4):1253-1261.
doi: 10.1021/es0304345 pmid: 14998045 |
[28] | U. S. Geological Survey. 1995-2015 Minerals Yearbook[M]. Reston, VA: U. S. Geological Survey, 1997-2017. |
[29] |
Ciacci L, Vassura I, Passarini F. Urban mines of copper: Size and potential for recycling in the EU[J]. Resources, 2017,6(1):6.
doi: 10.1080/23802359.2020.1844094 pmid: 33490584 |
[30] | Soulier M, Glöser-Chahoud S, Goldmann D, et al. Dynamic analysis of European copper flows[J]. Resources, Conservation and Recycling, 2018,129:143-152. |
[31] | Liu G, Muller D B. Mapping the global journey of anthropogenic aluminum: A trade-linked multilevel material flow analysis[J]. Environmental Science & Technology, 2013,47(20):11873-11881. |
[32] | Tong X, Lifset R. International copper flow network: A blockmodel analysis[J]. Ecological Economics, 2007,61(2):345-354. |
[33] | Espinoza L A T, Soulier M. An examination of copper contained in international trade flows[J]. Mineral Economics, 2016,29(2):47-56. |
[34] |
Kapur A, Graedel T E. Copper mines above and below the ground[J]. Environmental Science & Technology, 2006,40(10):3135-3141.
pmid: 16749672 |
[35] |
Gordon R B, Bertram M, Graedel T E. Metal stocks and sustainability[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006,103(5):1209-1214.
pmid: 16432205 |
[36] |
Gerst M D, Graedel T. In-use stocks of metals: Status and implications[J]. Environmental Science & Technology, 2008,42(19):7038-7045.
pmid: 18939524 |
[37] | Zhu X, Yu X B. Above-ground resource analysis with spatial resolution to support better decision making[J]. Journal of Sustainable Metallurgy, 2016, (2):304-312. |
[38] | United Nations Environment Programme (UNEP). Metal Stocks in Society: Scientific Synreport[R]. UNEP, 2010. https://www.unep.org/resources/report/metal-stocks-society-scientific-synreport. |
[39] | Mcmillan C A, Moore M R, Keoleian G A, et al. Quantifying US aluminum in-use stocks and their relationship with economic output[J]. Ecological Economics, 2010,69(12):2606-2613. |
[40] | The World Bank. World Development Indicators (WDI)[R/OL]. (2020-06-02) [2020-10-09]. https://datahelpdesk.worldbank.org/knowledgebase/topics/19286-world-development-indicators-wdi. |
[41] | Zhang L, Cai Z J, Yang J M, et al. Quantification and spatial characterization of in-use copper stocks in Shanghai[J]. Resources, Conservation and Recycling, 2014,93:134-143. |
[42] | Van Beers D, Graedel T E. The magnitude and spatial distribution of in-use copper stocks in Cape Town, South Africa[J]. South African Journal of Science, 2003,99(1):61-69. |
[43] | Daigo I, Hashimoto S, Matsuno Y, et al. Material stocks and flows accounting for copper and copper-based alloys in Japan[J]. Resources, Conservation and Recycling, 2009,53(4):208-217. |
[44] | Graedel T E, Harper E M, Nassar N, et al. Criticality of metals and metalloids[J]. Proceedings of the National Academy of Sciences, 2015,112(14):4257-4262. |
[45] |
Nassar N T, Barr R, Browning M, et al. Criticality of the geological copper family[J]. Environmental Science & Technology, 2011,46(2):1071-1078.
pmid: 22192049 |
[46] | Elshkaki A, Graedel T E, Ciacci L, et al. Copper demand, supply, and associated energy use to 2050[J]. Global Environmental Change, 2016,39:305-315. |
[47] | Kapur A. The future of the red metal: Scenario analysis[J]. Futures, 2005,37(10):1067-1094. |
[48] |
Elshkaki A, Graedel T E, Ciacci L, et al. Resource demand scenarios for the major metals[J]. Environmental Science & Technology, 2018,52(5):2491-2497.
pmid: 29380602 |
[49] | Schipper B W, Lin H C, Meloni M A, et al. Estimating global copper demand until 2100 with regression and stock dynamics[J]. Resources, Conservation and Recycling, 2018,132:28-36. |
[50] | U. S. Geological Survey. Mineral Commodity Summaries[M]. Reston: USGS, 1996-2019. |
[51] | Mudd G, Jowitt S. Growing global copper resources, reserves and production: Discovery is not the only control on supply[J]. Economic Geology, 2018,113(6):1235-1267. |
[52] |
Ali S H, Giurco D, Arndt N, et al. Mineral supply for sustainable development requires resource governance[J]. Nature, 2017,543:367-372.
doi: 10.1038/nature21359 pmid: 28300094 |
[53] | Northey S, Mohr S, Mudd G M, et al. Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining[J]. Resources, Conservation and Recycling, 2014,83:190-201. |
[54] | Sverdrup H U, Ragnarsdottir K V, Koca D. On modelling the global copper mining rates, market supply, copper price and the end of copper reserves[J]. Resources Conservation and Recycling, 2014,87:158-174. |
[55] | Graedel T E. Grand challenges in metal life cycles[J]. Natural Resources Research, 2018,27(2):181-190. |
[56] | Valenta R K, Kemp D, Owen J R, et al. Re-thinking complex orebodies: Consequences for the future world supply of copper[J]. Journal of Cleaner Production, 2019,220:816-826. |
[57] | United Nations Environment Programme (UNEP). Recycling Rates of Metals: A Status Report[R]. UNEP, 2011. https://www.unep.org/resources/report/recycling-rates-metals-status-report. |
[58] | Singer D A. Future copper resources[J]. Ore Geology Reviews, 2017,86:271-279. |
[59] | 杨建锋, 马腾, 王尧, 等. 社会经济发展对铜矿资源勘查驱动传导机制分析[J]. 资源科学, 2018,40(3):526-534. |
[ Yang J F, Ma T, Wang Y, et al. Socio-economic mechanisms driving copper exploration[J]. Resources Science, 2018,40(3):526-534.] | |
[60] | 姚海琳, 张翠虹. 中国资源循环利用产业政策演进特征研究[J]. 资源科学, 2018,40(3):567-579. |
[ Yao H L, Zhang C H. The evolution of China’s resource recycling industry policy[J]. Resources Science, 2018,40(3):567-579.] | |
[61] | 郝敏, 陈伟强, 马梓洁, 等. 2000-2015年中国铜废碎料贸易及效益风险分析[J]. 资源科学, 2020,42(8):1515-1526. |
[ Hao M, Chen W Q, Ma Z J, et al. Benefits and risks of China’s copper waste and scrap trade during 2000-2015[J]. Resources Science, 2020,42(8):1515-1526.] |
[1] | 王磊, 刘圆圆, 任宗悦, 颜蔚. 村镇建设与资源环境协调的国外经验及其对中国村镇发展的启示[J]. 资源科学, 2020, 42(7): 1223-1235. |
[2] | 陈海江, 司伟, 刘泽琦, 李朝柱, 张燕燕. 政府主导型生态补偿的多中心治理——基于农户社会网络的视角[J]. 资源科学, 2020, 42(5): 812-824. |
[3] | 孙才志, 王晨. 中国水资源投入的“拥塞效应”研究[J]. 资源科学, 2020, 42(2): 334-345. |
[4] | 王帅, 傅伯杰, 武旭同, 王亚萍. 黄土高原社会-生态系统变化及其可持续性[J]. 资源科学, 2020, 42(1): 96-103. |
[5] | 李俊鹏, 郑冯忆, 冯中朝. 基于公共产品视角的水资源利用效率提升路径研究[J]. 资源科学, 2019, 41(1): 98-112. |
[6] | 贾慧, 陈海, 毛南赵, 聂霞. 高度敏感生态脆弱区景观可持续性评价[J]. 资源科学, 2018, 40(6): 1277-1286. |
[7] | 沈镭, 钟帅, 胡纾寒. 全球变化下资源利用的挑战与展望[J]. 资源科学, 2018, 40(1): 1-10. |
[8] | 马维兢, 刘斌, 杨德伟, 郭青海. 基于三维生态足迹模型的流域自然资本动态评估——以福建省九龙江流域为例[J]. 资源科学, 2017, 39(5): 871-880. |
[9] | 盖美, 吴慧歌, 曲本亮. 新一轮东北振兴背景下的辽宁省水资源利用效率及其空间关联格局研究[J]. 资源科学, 2016, 38(7): 1336-1349. |
[10] | 韩琴, 孙才志, 邹玮. 1998-2012年中国省际灰水足迹效率测度与驱动模式分析[J]. 资源科学, 2016, 38(6): 1179-1191. |
[11] | 曹莉萍, 诸大建. 合同能源管理绩效评价的理论模型构建与实证研究[J]. 资源科学, 2016, 38(3): 414-427. |
[12] | 孙艳芝, 鲁春霞, 谢高地, 李娜, 胡绪千. 北京城市发展与水资源利用关系分析[J]. 资源科学, 2015, 37(6): 1124-1132. |
[13] | 谢花林, 刘曲, 姚冠荣, 谈明洪. 基于PSR模型的区域土地利用可持续性水平测度——以鄱阳湖生态经济区为例[J]. 资源科学, 2015, 37(3): 449-457. |
[14] | 黄德春, 马海良, 田泽, 张继国. 中国近年来水资源利用效率的省际差异:技术进步还是技术效率[J]. , 2012, 34(5): 794-801. |
[15] | 董毅明, 廖虎昌. 基于DEA和Malmquist指数的西部12省水资源利用效率研究[J]. , 2011, 33(2): 273-279. |
|