资源科学 ›› 2021, Vol. 43 ›› Issue (3): 501-512.doi: 10.18402/resci.2021.03.07
收稿日期:
2020-10-09
修回日期:
2020-12-01
出版日期:
2021-03-25
发布日期:
2021-05-25
作者简介:
宋璐璐,女,山西长治人,博士,副研究员,主要从事物质在全国或者城市尺度的存量与流量估算研究。E-mail: llsong@iue.ac.cn
基金资助:
SONG Lulu1,2(), CAO Zhi3, DAI Min1,4
Received:
2020-10-09
Revised:
2020-12-01
Online:
2021-03-25
Published:
2021-05-25
摘要:
中国是全球最大的汽车制造和消费国,汽车行业带来的资源消耗和温室气体排放受到了学者的广泛关注。辨析汽车行业的物质资源代谢特征和碳减排潜力可为落实循环经济政策和实现可持续发展提供科学依据。本文基于动态物质流模型,预测了中国乘用车中21种物质材料的代谢特征,评估了乘用车使用过程中的碳减排潜力。研究结果表明:①1949—2019年中国乘用车中的物质存量呈现指数型增长趋势,由2.3万t增加至3.7亿t。2030年后物质存量逐渐饱和,并于2050年达到5.6亿~11.1亿t;②2050年乘用车中物质材料报废量将超过需求量并达到37.4百万~73.8百万t/年;其中,钢铁(包括高强钢、普通钢和铁)报废量将达到21.2百万~42.4百万t/年;其他战略金属和稀贵金属报废量将达到36.8万~59.8万t/年;延长乘用车使用寿命以及较低的乘用车保有量可有效减少产废量;③提高汽油车的燃料效率是最有效的碳减排策略,其碳减排潜力高达3.3亿t,可降低40%的碳排放量。本文的研究结果可为汽车行业物质资源的有效管理以及碳减排策略的制定提供科学支撑。
宋璐璐, 曹植, 代敏. 中国乘用车物质代谢与碳减排策略[J]. 资源科学, 2021, 43(3): 501-512.
SONG Lulu, CAO Zhi, DAI Min. Material metabolism and carbon emission reduction strategies of passenger cars in China’s mainland[J]. Resources Science, 2021, 43(3): 501-512.
表1
乘用车物质使用强度情景设置"
序号 | 材料 | 使用强度/(kg/辆) | 序号 | 材料 | 使用强度/(g/辆) | ||||
---|---|---|---|---|---|---|---|---|---|
基准情景 | 低轻量化 | 高轻量化 | 基准情景 | 低轻量化 | 高轻量化 | ||||
1 | 普通钢(Steel) | 451 | 100 | — | 11 | 镁(Mg) | 3000 | 3000 | 3000 |
2 | 高强钢(HSS) | 250 | 339 | 424 | 12 | 钕(Nb) | 100 | 100 | 100 |
3 | 铁(Iron) | 77 | 77 | 77 | 13 | 镍(Ni) | 2200 | 2200 | 2200 |
4 | 铝(Al) | 180 | 250 | 200 | 14 | 锡(Sn) | 530 | 530 | 530 |
5 | 铜(Copper) | 31 | 31 | 31 | 15 | 轻稀土(LREE) | 76 | 76 | 76 |
6 | 塑料(Plastic) | 230 | 230 | 230 | 16 | 重稀土(HREE) | 6 | 6 | 6 |
7 | 橡胶(Rubber) | 41 | 41 | 41 | 17 | 钴(Co) | 42 | 42 | 42 |
8 | 玻璃(Glass) | 53 | 53 | 53 | 18 | 银(Ag) | 17 | 17 | 17 |
9 | 其他材料(Misc) | 43 | 43 | 43 | 19 | 钨(W) | 10 | 10 | 10 |
10 | 锰(Mn) | 7.5 | 7.5 | 7.5 | 20 | 钽(Ta) | 6 | 6 | 6 |
21 | 金(Au) | 2 | 2 | 2 |
表2
未来不同发展情景的参数设置"
核算指标 | 情景设置 | 参数设置 | ||||||
---|---|---|---|---|---|---|---|---|
P/亿 | c/(辆/1000人) | τ/年 | I/(t/辆) | F/(L/100 km) | T/% | K/(km/年) | ||
产品/物质代谢 核算情景 | 基准情景 | 13.6 | 450 | 15 | 451/250/180 | — | — | — |
少人口 | 12.3 | 450 | 15 | 451/250/180 | — | — | — | |
多人口 | 15.1 | 450 | 15 | 451/250/180 | — | — | — | |
低保有量 | 13.6 | 300 | 15 | 451/250/180 | — | — | — | |
高保有量 | 13.6 | 600 | 15 | 451/250/180 | — | — | — | |
短寿命 | 13.6 | 450 | 12 | 451/250/180 | — | — | — | |
长寿命 | 13.6 | 450 | 18 | 451/250/180 | — | — | — | |
低轻量化 | 13.6 | 450 | 15 | 100/339/250 | ||||
高轻量化 | 13.6 | 450 | 15 | —/424/200 | ||||
最小值 | 12.3 | 300 | 18 | 451/250/180 | — | — | — | |
最大值 | 13.6 | 600 | 12 | 451/250/180 | — | — | — | |
碳排放核算情景 | 高燃油效率 | 13.6 | 450 | — | — | 4.5 | 35 | 13000 |
高电动车比例 | 13.6 | 450 | — | — | 4.5 | 55 | 13000 | |
少行驶里程 | 13.6 | 450 | — | — | 4.5 | 55 | 12000 | |
低保有量 | 13.6 | 300 | — | — | 4.5 | 55 | 12000 | |
少人口 | 12.3 | 300 | — | — | 4.5 | 55 | 12000 |
[1] | United Nations General Assembly. United Nations Resolution A/RES/70/1[R]. New York: United Nations General Assembly, 2015. |
[2] | 王秋蓉, 温宗国. 循环经济是推进可持续发展的强大引擎: 访清华大学环境学院教授、循环经济产业研究中心主任温宗国[J]. 可持续发展经济导刊, 2019, (12):35-38. |
[ Wang Q R, Wen Z G. Circular economy is a powerful engine to promote sustainable development: Interview with Wen Zongguo, professor of the School of Environment of Tsinghua University and director of the Circular Economy Industry Research Center[J]. China Sustainability Tribune, 2019, (12):35-38.] | |
[3] | 沈丽娜, 马俊杰. 国内外城市物质代谢研究进展[J]. 资源科学, 2015,37(10):1941-1952. |
[ Shen L N, Ma J J. Progress on metabolism of cities[J]. Resources Science, 2015,37(10):1941-1952.] | |
[4] | Pauliuk S, Dhaniati N M, Müller D B. Reconciling sectoral abatement strategies with global climate targets: The case of the Chinese passenger vehicle fleet[J]. Environmental Science & Technology, 2012,46(1):140-147. |
[5] |
Modaresi R, Pauliuk S, Løvik AN, et al. Global carbon benefits of material substitution in passenger cars until 2050 and the impact on the steel and aluminum industries[J]. Environmental Science & Technology, 2014,48(18):10776-10784.
pmid: 25111289 |
[6] | Serrenho A C, Norman J B, Allwood J M. The impact of reducing car weight on global emissions: The future fleet in Great Britain[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, DOI: 10.1098/rsta.2016.0364. |
[7] | Milovanoff A, Posen I D, Maclean HL. Electrification of light-duty vehicle fleet alone will not meet mitigation targets[J]. Nature Climate Change, 2020,10(12):1-6. |
[8] | Ortego A, Calvo G, Valero A, et al. Assessment of strategic raw materials in the automobile sector[J]. Resources, Conservation and Recycling, 2020, DOI: 10.1016/j.resconrec.2020.104968. |
[9] | Sharma L, Pandey S. Recovery of resources from end-of-life passenger cars in the informal sector in India[J]. Sustainable Production and Consumption, 2020,24:1-11. |
[10] | 中汽数据有限公司. 中国汽车低碳行动计划研究报告[R]. 天津: 中汽数据有限公司, 2020. |
[ Automotive Data of China. China Automobile Low Carbon Action Plan Research Report[R]. Tianjin: Automotive Data of China, 2020.] | |
[11] | International Energy Agency. Key World Energy Statistics[R/OL]. (2019-12-01) [2020-11-10]. https://www.iea.org/topics/transport. |
[12] | Brunner P H, Rechberger H. Practical Handbook of Material Flow Analysis[M]. New York: Lewis Publishers, 2003. |
[13] | 郝敏, 陈伟强, 马梓洁, 等. 2000-2015年中国铜废碎料贸易及效益风险分析[J]. 资源科学, 2020,42(8):1515-1526. |
[ Hao M, Chen W Q, Ma Z J, et al. Benefits and risks of China’s copper waste and scrap trade during 2000-2015[J]. Resources Science, 2020,42(8):1515-1526.] | |
[14] | 刘刚, 曹植, 王鹤鸣, 等. 推进物质流和社会经济代谢研究, 助力实现联合国可持续发展目标[J]. 中国科学院院刊, 2018,33(1):30-39. |
[ Liu G, Cao Z, Wang H M, et al. Promoting material flow andsocioeconomic metabolism analysis for achieving UN 2030 sustainable development goals[J]. Bulletin of Chinese Academy of Sciences, 2018,33(1):30-39.] | |
[15] |
Song L L, Wang P, Hao M, et al. Mapping provincial steel stocks and flows in China: 1978-2050[J]. Journal of Cleaner Production, 2020, DOI: 10.1016/j.jclepro.2020.121393.
pmid: 33078048 |
[16] | 中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2019. |
[ National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook 2019[M]. Beijing: China Statistics Press, 2019.] | |
[17] | 宋璐璐, 陈伟强, 代敏. 中国汽车,船舶和家电中钢铁的存量与流量[J]. 自然资源学报, 2020,35(4):895-907. |
[ Song L L, Chen W Q, Dai M. Stocks and flows of steel in automobiles, vessels and household appliances in China[J]. Journal of Natural Resources, 2020,35(4):895-907.] | |
[18] | Wang T, Müller D B, Hashimoto S. The ferrous find: Counting iron and steel stocks in China’s economy[J]. Journal of Industrial Ecology, 2015,19(5):877-889. |
[19] | 中国汽车工程学会. 节能与新能源汽车技术路线图2. 0[R]. 北京: 中国汽车工程学会, 2019. |
[ China Society of Automotive Engineers. Energy-Saving and New Energy Automobile Technology Roadmap 2. 0[R]. Beijing: China Society of Automotive Engineers, 2019.] | |
[20] |
Field F R, Wallington T J, Everson M, et al. Strategic materials in the automobile: A comprehensive assessment of strategic and minor metals use in passenger cars and light trucks[J]. Environmental Science & Technology, 2017,51(24):14436-14444.
pmid: 29120610 |
[21] | United Nations. World Population Prospects 2019[R/OL]. (2019-02-01) [2020-08-22]. https://population.un.org/wpp/Download/Standard/Population/. |
[22] | Pauliuk S, Müller D B. The role of in-use stocks in the social metabolism and in climate change mitigation[J]. Global Environmental Change, 2014,24:132-142. |
[23] | Melo MT. Statistical analysis of metal scrap generation: The case of aluminium in Germany[J]. Resources Conservation & Recycling, 1999,26(2):91-113. |
[24] | Inghels D, Dullaert W, Raa B, et al. Influence of composition, amount and life span of passenger cars on end-of-life vehicles waste in Belgium: A system dynamics approach[J]. Transportation Research Part A: Policy and Practice, 2016,91:80-104. |
[25] |
Pauliuk S, Waugh R, Müller DB, et al. The steel scrap age[J]. Environmental Science & Technology, 2013,47(7):3448-3454.
pmid: 23442209 |
[26] | Cui X G, Fang C L, Liu H M, et al. Dynamic simulation of urbanization and eco-environment coupling: Current knowledge and future prospects[J]. Journal of Geographical Sciences, 2020,30(2):333-352. |
[27] | Zhang C, Chen W Q, Liu G, et al. Economic growth and the evolution of material cycles: An analytical framework integrating material flow and stock indicators[J]. Ecological Economics, 2017,140:265-274. |
[28] | Zhang C, Chen W Q, Ruth M. Measuring material efficiency: A review of the historical evolution of indicators, methodologies and findings[J]. Resources Conservation & Recycling, 2018,132:79-92. |
[1] | 盛虎, 刘欣, 芦昕雨, 廖宇星, 袁增伟. 复杂物质循环过程模拟方法与平台实现——以畜禽养殖系统磷循环为例[J]. 资源科学, 2021, 43(3): 465-476. |
[2] | 张玲, 冉文春, 袁增伟. 人类圈铜循环格局演变及趋势[J]. 资源科学, 2021, 43(3): 513-523. |
[3] | 刘立涛, 赵慧兰, 刘晓洁, 代涛, 刘刚. 1995—2015年美国钴物质流演变[J]. 资源科学, 2021, 43(3): 524-534. |
[4] | 李新, 康欣宇, 林靖, 陈璐, 王敏晰. 中国铅资源流动及其循环效率[J]. 资源科学, 2021, 43(3): 535-545. |
[5] | 张元林, 张上, 李金惠, 曾现来. 中国钢结构建筑的物质流分析[J]. 资源科学, 2021, 43(3): 546-555. |
[6] | 汪中才, 宋庆彬, 蔡铠涵, 李金惠. 家用空调制冷剂物质流动态演化特征——以中国澳门特别行政区为例[J]. 资源科学, 2021, 43(3): 556-566. |
[7] | 王敏晰, 马宇, 刘威, 王亚杰, 李新. 生态文明建设与资源循环利用耦合关系[J]. 资源科学, 2021, 43(3): 577-587. |
[8] | 赵娜娜, 王志宝, 李鸿梅. 中国能耗模式演变及其对经济发展的影响[J]. 资源科学, 2021, 43(1): 122-133. |
[9] | 纪晓萌, 秦伟山, 李世泰, 刘肖梅, 王秋贤. 中国地级单元旅游业发展效率格局及影响因素[J]. 资源科学, 2021, 43(1): 185-196. |
[10] | 孙艺璇, 程钰, 刘娜. 中国经济高质量发展时空演变及其科技创新驱动机制[J]. 资源科学, 2021, 43(1): 82-93. |
[11] | 韩璟, 陈泽秀, 卢新海. 中国海外耕地投资发展的时空格局演变与影响因素[J]. 资源科学, 2020, 42(9): 1715-1727. |
[12] | 王萍萍, 韩一军, 张益. 中国农业化肥施用技术效率演变特征及影响因素[J]. 资源科学, 2020, 42(9): 1764-1776. |
[13] | 罗屹, 苗海民, 黄东, 武拉平, 朱俊峰. 农户仓类设施采纳及其对玉米储存数量和损失的影响[J]. 资源科学, 2020, 42(9): 1777-1787. |
[14] | 郝敏, 陈伟强, 马梓洁, 张超, 甘建邦. 2000—2015年中国铜废碎料贸易及效益风险分析[J]. 资源科学, 2020, 42(8): 1515-1526. |
[15] | 周美静, 黄健柏, 邵留国, 杨丹辉. 中国稀土政策演进逻辑与优化调整方向[J]. 资源科学, 2020, 42(8): 1527-1539. |
|