资源科学 ›› 2021, Vol. 43 ›› Issue (3): 465-476.doi: 10.18402/resci.2021.03.04
盛虎1(), 刘欣2, 芦昕雨2, 廖宇星2, 袁增伟1,2(
)
收稿日期:
2020-11-04
修回日期:
2021-03-09
出版日期:
2021-03-25
发布日期:
2021-05-25
通讯作者:
袁增伟
作者简介:
盛虎,男,湖北孝感人,博士,副研究员,研究方向为磷循环过程模拟及环境大数据。E-mail: shenghu@nju.edu.cn
基金资助:
SHENG Hu1(), LIU Xin2, LU Xinyu2, LIAO Yuxing2, YUAN Zengwei1,2(
)
Received:
2020-11-04
Revised:
2021-03-09
Online:
2021-03-25
Published:
2021-05-25
Contact:
YUAN Zengwei
摘要:
物质循环是人类获取资源的重要方式,尤其是对于磷这种地球生物生存不可或缺、不可替代的资源,理解其循环过程对资源可持续利用乃至人类永续发展具有重要意义。目前关于物质循环的研究多采用物质流分析方法,该方法是一种以物质流动过程质量守恒为基础、以系统分析为手段的定量核算方法,需要将系统物质流动路径与核算模型融为一体。为了解决传统物质流分析方法中数据与模型无法分离从而不适应与复杂物质循环过程模拟的问题,本文提出了复杂物质循环过程模拟概念模型与定量计算公式,建立了基于数据库、模型库、结果库、分析库4库分离的复杂物质循环过程建模方法,并基于EnVirLab环境虚拟仿真实验平台,以中国1600—2012年畜禽养殖系统磷循环过程为例开展方法验证研究,验证了基于4“库”分离的复杂物质循环过程模拟分析方法的可行性。本文对于建立标准化的物质流分析方法及开发复杂物质循环过程模拟软件,进而精确量化物质循环路径,对实现物质循环过程模拟从定量格局描述性分析向定量机理解释性分析转变具有重要意义。
盛虎, 刘欣, 芦昕雨, 廖宇星, 袁增伟. 复杂物质循环过程模拟方法与平台实现——以畜禽养殖系统磷循环为例[J]. 资源科学, 2021, 43(3): 465-476.
SHENG Hu, LIU Xin, LU Xinyu, LIAO Yuxing, YUAN Zengwei. Complex material cycling process simulation method and platform: Taking the phosphorus cycling of livestock and poultry breeding system as an example[J]. Resources Science, 2021, 43(3): 465-476.
[1] | 成升魁, 甄霖. 资源流动研究的理论框架与决策应用[J]. 资源科学, 2007,29(3):37-44. |
[ Cheng S K, Zhen L. Resource flow: Theoretical framework and application for decision making[J]. Resources Science, 2007,29(3):37-44.] | |
[2] | Chen M P, Graedel T E. A half-century of global phosphorus flows, stocks, production, consumption, recycling, and environmental impacts[J]. Global Environmental Change, 2016,36:139-152. |
[3] | 陈敏鹏, 郭宝玲, 刘昱, 等. 磷元素物质流分析研究进展[J]. 生态学报, 2015,35(20):6891-6900. |
[ Chen M P, Guo B L, Liu Y, et al. Research on phosphorus flow analysis: Progress and perspectives[J]. Acta Ecologica Sinica, 2015,35(20):6891-6900.] | |
[4] | Liu X, Sheng H, Jiang S Y, et al. Intensification of phosphorus cycling in China since the 1600s[J]. Proceedings of The National Academy of Sciences, 2016,113(10):2609-2614. |
[5] | Ulrich A E, Frossard E. On the history of a reoccurring concept: Phosphorus scarcity[J]. Science of the Total Environment, 2014,490:694-707. |
[6] | Walan P, Davidsson S, Johansson S, et al. Phosphate rock production and depletion: Regional disaggregated modeling and global implications[J]. Resources, Conservation and Recycling, 2014,93:178-187. |
[7] | 中华人民共和国生态环境部. 2019中国生态环境状况公报[EB/OL]. (2020-06-02) [2021-03-05]. http://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/202006/P020200602509464172096.pdf. |
[ Ministry of Ecology and Environment of the People’s Republic of China. China’s Ecology and Environment Statement, 2019[EB/OL]. (2020-06-02) [2021-03-05]. http://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/202006/P020200602509464172096.pdf. | |
[8] |
Rockström J, Steffen W, Noonk K, et al. A safe operating space for humanity[J]. Nature, 2009,461(7263):472-475.
pmid: 19779433 |
[9] |
Steffen W, Richardson K, RockstrÖm J, et al. Planetary boundaries: Guiding human development on a changing planet[J]. Science, 2015, DOI: 10.1126/science.1259855.
pmid: 33888625 |
[10] |
Yuan Z W, Jiang S Y, Sheng H, et al. Human perturbation of the global phosphorus cycle: Changes and consequences[J]. Environmental Science & Technology, 2018,52(5):2438-2450.
pmid: 29402084 |
[11] | Ma D C, Hu S Y, Chen D J, et al. The temporal evolution of anthropogenic phosphorus consumption in China and its environmental implications[J]. Journal of Industrial Ecology, 2013,17(4):566-577. |
[12] | 郝敏, 陈伟强, 马梓洁, 等. 2000-2015 年中国铜废碎料贸易及效益风险分析[J]. 资源科学, 2020,42(8):1515-1526. |
[ Hao M, Chen W Q, Ma Z J, et al. Benefits and risks of China’s copper waste and scrap trade during 2000-2015[J]. Resources Science, 2020,42(8):1515-1526.] | |
[13] | 栾晓玉, 刘巍, 崔兆杰, 等. 基于物质流分析的中国塑料资源代谢研究[J]. 资源科学, 2020,42(2):372-382. |
[ Luan X Y, Liu W, Cui Z J, et al. Plastic resources metabolism in China based on material flow analysis[J]. Resources Science, 2020,42(2):372-382.] | |
[14] | 吴明, 姜国强, 贾冯睿, 等. 基于物质流和生命周期分析的石油行业碳排放[J]. 资源科学, 2018,40(6):1287-1296. |
[ Wu M, Jiang G Q, Jia F R, et al. Carbon emissions from the petroleum industry based on the analysis of material flow and life cycle[J]. Resources Science, 2018,40(6):1287-1296.] | |
[15] | 沈镭, 钟帅, 胡纾寒. 全球变化下资源利用的挑战与展望[J]. 资源科学, 2018,40(1):1-10. |
[ Shen L, Zhong S, Hu S H. Resource utilization under global change: Challenges and outlook[J]. Resources Science, 2018,40(1):1-10.] | |
[16] | Brunner P H, Rechberger H. Practical Handbook of Material Flow Analysis[M]. Boca Raton: CRC Press, 2004. |
[17] | Chowdhury R B, Moore G A, Weatherley A J, et al. A novel substance flow analysis model for analysing multi-year phosphorus flow at the regional scale[J]. Science of the Total Environment, 2016,572:1269-1280. |
[18] |
Yuan Z W, Shi J K, Wu H J, et al. Understanding the anthropogenic phosphorus pathway with substance flow analysis at the city level[J]. Journal of Environmental Management, 2011,92(8):2021-2028.
pmid: 21489683 |
[19] | Yuan Z W, Wu H J, He X F, et al. A bottom-up model for quantifying anthropogenic phosphorus cycles in watersheds[J]. Journal of Cleaner Production, 2014,84:502-508. |
[20] |
Yuan Z W, Sun L, Bi J, et al. Phosphorus flow analysis of the socioeconomic ecosystem of Shucheng County, China[J]. Ecological Applications, 2011,21(7):2822-2832.
pmid: 22073662 |
[21] | 王倩楠. 区域与企业的碳流图分析方法研究与应用[D]. 武汉: 华中科技大学, 2018. |
[ Wang Q N. Research and Application of Carbon Flow Diagram Analysis Method for Region and Enterprise[D]. Wuhan: Huazhong University of Science and Technology, 2018.] | |
[22] | Cencic O, Rechberger H. Material flow analysis with Software STAN[J]. Journal of Environmental Engineering and Management, 2008,18:3-7. |
[23] | Rothwell S A, Doody D G, Johnston C, et al. Phosphorus stocks and flows in an intensive livestock dominated food system[J]. Resources, Conservation and Recycling, 2020, DOI: 10.1016/j.resconrec.2020.105065. |
[24] | Tanzer J, Zoboli O, Zessner M, et al. Filling two needs with one deed: Potentials to simultaneously improve phosphorus and nitrogen management in Austria as an example for coupled resource management systems[J]. Science of the Total Environment, 2018,640:894-907. |
[25] | Cooper J, Carliell-Marquet C. A substance flow analysis of phosphorus in the UK food production and consumption system[J]. Resources, Conservation and Recycling, 2013,74:82-100. |
[26] | Sheng H. sfc: Substance Flow Computation[EB/OL]. (2016-08-25) [2021-03-05]. https://cran.r-project.org/web/packages/sfc/. |
[27] | Treadwell J L, Clark O G, Bennett E M. Dynamic simulation of phosphorus flows through Montreal’s food and waste systems[J]. Resources, Conservation and Recycling, 2018,131:122-133. |
[28] |
Paerl H W, Xu H, Mccarthy M J, et al. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): The need for a dual nutrient (N & P) management strategy[J]. Water Research, 2011,45(5):1973-1983.
pmid: 20934736 |
[29] | Džubur N, Buchner H, Laner D. Evaluating the use of global sensitivity analysis in dynamic MFA[J]. Journal of Industrial Ecology, 2017,21(5):1212-1225. |
[30] | Laner D, Rechberger H, Astrup T. Systematic evaluation of uncertainty in material flow analysis[J]. Journal of Industrial Ecology, 2014,18(6):859-870. |
[31] | Jiang S Y, Hua H, Sheng H, et al. Phosphorus footprint in China over the 1961-2050 period: Historical perspective and future prospect[J]. Science of the Total Environment, 2019,650:687-695. |
[32] | Van Vuuren D P, Bouwman A F, Beusen A H W. Phosphorus demand for the 1970-2100 period: A scenario analysis of resource depletion[J]. Global Environmental Change, 2010,20(3):428-439. |
[1] | 宋璐璐, 曹植, 代敏. 中国乘用车物质代谢与碳减排策略[J]. 资源科学, 2021, 43(3): 501-512. |
[2] | 刘立涛, 赵慧兰, 刘晓洁, 代涛, 刘刚. 1995—2015年美国钴物质流演变[J]. 资源科学, 2021, 43(3): 524-534. |
[3] | 李新, 康欣宇, 林靖, 陈璐, 王敏晰. 中国铅资源流动及其循环效率[J]. 资源科学, 2021, 43(3): 535-545. |
[4] | 张元林, 张上, 李金惠, 曾现来. 中国钢结构建筑的物质流分析[J]. 资源科学, 2021, 43(3): 546-555. |
[5] | 汪中才, 宋庆彬, 蔡铠涵, 李金惠. 家用空调制冷剂物质流动态演化特征——以中国澳门特别行政区为例[J]. 资源科学, 2021, 43(3): 556-566. |
[6] | 王敏晰, 马宇, 刘威, 王亚杰, 李新. 生态文明建设与资源循环利用耦合关系[J]. 资源科学, 2021, 43(3): 577-587. |
[7] | 朱学红, 彭婷, 谌金宇. 战略性关键金属贸易网络特征及其对产业结构升级的影响[J]. 资源科学, 2020, 42(8): 1489-1503. |
[8] | 郝敏, 陈伟强, 马梓洁, 张超, 甘建邦. 2000—2015年中国铜废碎料贸易及效益风险分析[J]. 资源科学, 2020, 42(8): 1515-1526. |
[9] | 任立, 吴萌, 甘臣林, 陈银蓉. 基于SEM-SD模型的城市近郊区农户土地投入行为决策机制仿真研究[J]. 资源科学, 2020, 42(2): 286-297. |
[10] | 栾晓玉, 刘巍, 崔兆杰, 刘业业, 陈月冬, 卢盛, 王玉标. 基于物质流分析的中国塑料资源代谢研究[J]. 资源科学, 2020, 42(2): 372-382. |
[11] | 严良,熊伟伟,王小林,王腾. 供需错配下能源替代路径优化[J]. 资源科学, 2019, 41(9): 1655-1664. |
[12] | 吴明, 姜国强, 贾冯睿, 刘广鑫, 岳强. 基于物质流和生命周期分析的石油行业碳排放[J]. 资源科学, 2018, 40(6): 1287-1296. |
[13] | 朱学红, 张宏伟, 黄健柏, 邵留国, 郭尧琦. 突发事件对国家金属资源安全的冲击影响[J]. 资源科学, 2018, 40(3): 486-497. |
[14] | 李新, 任强, 罗胤达, 代涛, 文博杰, 王敏晰. 基于物质流分析的中国机械行业铁资源代谢过程研究[J]. 资源科学, 2018, 40(12): 2329-2340. |
[15] | 刘仟策, 刘立涛, 刘剑, 李胜功, 白晧, 刘刚. 重庆市钢铁存量估算及驱动力分析[J]. 资源科学, 2018, 40(12): 2341-2350. |
|