资源科学 ›› 2021, Vol. 43 ›› Issue (2): 293-303.doi: 10.18402/resci.2021.02.08
收稿日期:
2020-01-12
修回日期:
2020-07-31
出版日期:
2021-02-25
发布日期:
2021-04-25
通讯作者:
杨振山
作者简介:
杨定,男,陕西商洛人,硕士研究生,研究方向为城市与区域可持续发展。E-mail: 基金资助:
YANG Ding1,2,3(), YANG Zhenshan1,2(
)
Received:
2020-01-12
Revised:
2020-07-31
Online:
2021-02-25
Published:
2021-04-25
Contact:
YANG Zhenshan
摘要:
生态贫困研究对于理解生态环境恶劣地区生态环境与贫困作用机制、支撑巩固减贫成果的政策制定具有重要意义,然而对高寒地区的生态贫困评价和影响因素探索较少。本文以藏北深度贫困区色林错地区为例,构建生态贫困评价体系,将BP神经网络模型和DEMATEL方法相结合,对该地区生态贫困水平及其影响因素进行分析。研究表明:①色林错地区各乡镇生态贫困指数平均值为2.97,多数乡镇生态贫困等级集中在三级(最贫困为五级),且生态贫困等级较高的乡镇处于地理环境恶劣的山区,生态贫困等级较低的乡镇处于湖盆附近自然条件较好的区域;②各因素对生态贫困的影响方向存在差异,地面坡度、地形起伏度、平均气温与平均海拔对生态贫困有正向作用,河网密度、平均降水、土壤质地结构与植被指数对生态贫困有负向作用;应引导居民尽量减少在生态系统抗干扰能力弱的区域活动,加强优良草场和水源地保护,发展现代畜牧业和旅游服务业等特色产业,推动社区发展以降低生计脆弱性;③平均海拔、地形起伏度和地面坡度是影响生态贫困的关键因素,并与平均气温和降水等因素相关联;应以海拔、地形等为主要考虑因素,优化居民点布局,积极应对生态贫困。研究结果不仅可为从生态环境角度出发制定长期有效的减贫策略提供参考,还可为其他地区生态贫困监测提供借鉴。
杨定, 杨振山. 高寒地区生态贫困评价及影响因素分析——以色林错地区为例[J]. 资源科学, 2021, 43(2): 293-303.
YANG Ding, YANG Zhenshan. Ecological poverty and its influencing factors in an alpine area: Case study of the Selinco area[J]. Resources Science, 2021, 43(2): 293-303.
表2
生态贫困评价标准"
海拔/m | 地形起伏度/m | 地面坡度/° | 平均降水量/mm | 平均气温/℃ | 平均植被指数 | 土壤质地结构 | 河网密度/(km/km2) | 生态贫困等级 EPI |
---|---|---|---|---|---|---|---|---|
4731 | 17.45 | 6.51 | 208.12 | 6.71 | 0.14 | 0.46 | 0.32 | 1 |
4845 | 22.51 | 8.22 | 174.64 | 2.79 | 0.12 | 0.40 | 0.24 | 2 |
4959 | 27.57 | 9.94 | 141.15 | -1.13 | 0.11 | 0.35 | 0.17 | 3 |
5073 | 32.62 | 11.65 | 107.67 | -5.05 | 0.09 | 0.29 | 0.10 | 4 |
5187 | 37.68 | 13.36 | 74.19 | -8.97 | 0.08 | 0.24 | 0.02 | 5 |
表3
基于MIV值的各影响因素对生态贫困影响程度"
影响因素 | MIV | |||
---|---|---|---|---|
地区整体 | 班戈县 | 尼玛县 | 申扎县 | |
平均海拔 | 0.0292 | 0.1080 | 0.0513 | 0.0220 |
地形起伏度 | 0.0400 | 0.3335 | 0.1408 | 0.0268 |
地面坡度 | 0.0520 | 0.3659 | 0.1518 | 0.0413 |
平均降水量 | -0.0255 | -0.5315 | -0.0724 | -0.0315 |
平均气温 | 0.0379 | 0.0101 | 0.0339 | 0.0527 |
植被指数 | -0.0006 | -0.0082 | -0.0022 | -0.0001 |
土壤质地结构 | -0.0104 | -0.1427 | -0.0184 | -0.0114 |
河网密度 | -0.0496 | -0.0867 | -0.2209 | -0.0086 |
表4
基于DEMATE的生态贫困影响因素相互关系"
资源环境要素 | 影响度 | 被影响度 | 中心度 | 原因度 |
---|---|---|---|---|
平均海拔 | 0.4483 | 0.3489 | 0.7972 | 0.0994 |
地形起伏度 | 0.4136 | 0.3787 | 0.7922 | 0.0349 |
地面坡度 | 0.4110 | 0.3048 | 0.7159 | 0.0862 |
平均降水量 | 0.2627 | 0.4093 | 0.6719 | -0.1466 |
平均气温 | 0.1040 | 0.4010 | 0.4050 | -0.2970 |
植被指数 | 0.1858 | 0.2225 | 0.4083 | -0.0367 |
土壤质地结构 | 0.1588 | 0.2228 | 0.3816 | -0.0640 |
河网密度 | 0.2568 | 0.3310 | 0.5878 | -0.0742 |
[1] | 李寻欢, 周扬, 陈玉福. 区域多维贫困测量的理论与方法[J]. 地理学报, 2020,75(4):753-768. |
[Li X H, Zhou Y, Chen Y F. Theory and measurement of regional multidimensional poverty[J]. Acta Geographica Sinica, 2020,75(4):753-768.] | |
[2] | 李虹. 中国生态脆弱区的生态贫困与生态资本文[D]. 成都: 西南财经大学, 2011. |
[Li H. Study on Ecological Poverty and Ecological Capital in Chinese Ecologically Fragile Areas[D]. Chengdu: Southwestern University of Finance and Economics, 2011.] | |
[3] | Coward W E, Oliver M L, Conroy M E. Building Natural Assets Re-Thinking the Centers’ Natural Resources Agenda and Its Links to Poverty Alleviation[R]. San Jose: Assessing the Impact of Agricultural Research on Poverty Alleviation, 1999. |
[4] | 龙先琼. 关于生态贫困问题的几点理论思考[J]. 吉首大学学报(社会科学版), 2019,40(3):108-113. |
[Long X Q. Some theoretical reflections on ecological poverty[J]. Journal of Jishou University(Social Sciences), 2019,40(3):108-113.] | |
[5] | 周扬, 李寻欢, 童春阳, 等. 中国村域贫困地理格局及其分异机理[J/OL]. 地理学报, (2020-07-07) [2020-07-21]. https://kns.cnki.net/KCMS/detail/11.1856.P.20200707.1315.002.html. |
[Zhou Y, Li X H, Tong C Y, et al. The geographical pattern and differentiational mechanism of rural poverty in China[J/OL]. Acta Geographica Sinica, (2020 -07-07) [2020-07-21]. https://kns.cnki.net/KCMS/detail/11.1856.P.20200707.1315.002.html.] | |
[6] |
Partridge M D, Rickman D S. Distance from urban agglomeration economies and rural poverty[J]. Journal of Regional Science, 2008,48(2):285-310.
doi: 10.1111/j.1467-9787.2008.00552.x |
[7] |
Jalan J, Ravallion M. Geographic poverty traps? A micro model of consumption growth in rural China[J]. Journal of Applied Econometrics, 2002,17(4):329-346.
doi: 10.1002/(ISSN)1099-1255 |
[8] |
Daimon T. The spatial dimension of welfare and poverty: Lessons from a regional targeting programme in Indonesia[J]. Asian Economic Journal, 2001,15(4):345-367.
doi: 10.1111/asej.2001.15.issue-4 |
[9] |
丁建军, 冷志明. 区域贫困的地理学分析[J]. 地理学报, 2018,73(2):232-247.
doi: 10.11821/dlxb201802003 |
[Ding J J, Leng Z M. Regional poverty analysis in a view of geography science[J]. Acta Geographica Sinica, 2018,73(2):232-247.] | |
[10] | Jahan S, Umana A. Environment-poverty nexus[J]. Development Policy Journal, 2003, (3):53-70. |
[11] |
Aluko M A O. Sustainable development, environmental degradation and the entrenchment of poverty in the Niger Delta of Nigeria[J]. Journal of Human Ecology, 2006,13(2):181-188.
doi: 10.1080/09709274.2002.11905531 |
[12] | 陈甲, 刘德钦, 王昌海. 生态扶贫研究综述[J]. 林业经济, 2017,39(8):31-36. |
[Chen J, Liu D Q, Wang C H. Research review of ecological poverty alleviation[J]. Forestry Economics, 2017,39(8):31-36.] | |
[13] | 张洪伟. 我国区域生态贫困问题探析[J]. 中共南昌市委党校学报, 2018,16(4):43-46. |
[Zhang H W. Analysis of regional ecological poverty in China[J]. Journal of the Party School of CPC Nanchang Municipal Committee, 2018,16(4):43-46.] | |
[14] | 程蹊, 陈全功, 程兵. 工业化引致生态贫困的基本过程与形式浅析[J]. 生态经济, 2015,31(5):166-169. |
[Cheng X, Chen Q G, Cheng B. Analysis on the basic forms and processes of ecological poverty resulted from industrialization[J]. Ecological Economy, 2015,31(5):166-169.] | |
[15] | 陈阿江, 闫春华. 从生态贫困到绿色小康: 生态脆弱区的乡村振兴之路[J]. 云南社会科学, 2020, (1):24-31. |
[Chen A J, Yan C H. From ecological poverty to green and well-off: The road to rural revitalization in ecologically fragile area[J]. Social Sciences in Yunnan, 2020, (1):24-31.] | |
[16] | Cao S S, Wang Y H, Duan F Z, et al. Coupling between ecological vulnerability and economic poverty in contiguous destitute areas, China: Empirical analysis of 714 poverty-stricken counties[J]. The Journal of Applied Ecology, 2016,27(8):2614-2622. |
[17] |
许月卿, 李双成, 蔡运龙. 基于GIS和人工神经网络的区域贫困化空间模拟分析: 以贵州省猫跳河流域为例[J]. 地理科学进展, 2006,25(3):79-85.
doi: 10.11820/dlkxjz.2006.03.010 |
[Xu Y Q, Li S C, Cai Y L. Spatial simulation using GIS and artificial neural network for regional poverty: A case study of Maotiaohe Watershed, Guizhou Province[J]. Progress in geography, 2006,25(3):79-85.] | |
[18] | 王艳慧, 钱乐毅, 陈烨烽, 等. 生态贫困视角下的贫困县多维贫困综合度量[J]. 应用生态学报, 2017,28(8):2677-2686. |
[Wang Y H, Qian L Y, Chen Y F, et al. Multidimensional and comprehensive poverty measurement of poverty-stricken counties from the perspective of ecological poverty[J]. Chinese Journal of Applied Ecology, 2017,28(8):2677-2686.] | |
[19] | 曲玮, 涂勤, 牛叔文, 等. 自然地理环境的贫困效应检验: 自然地理条件对农村贫困影响的实证分析[J]. 中国农村经济, 2012, (2):21-34. |
[Qu W, Tu Q, Niu S W, et al. Test of the poverty effect of natural geographical environment: An empirical analysis of the effects of natural geographical conditions on rural poverty[J]. Chinese Rural Economy, 2012, (2):21-34.] | |
[20] |
刘艳华, 徐勇. 中国农村多维贫困地理识别及类型划分[J]. 地理学报, 2015,70(6):993-1007.
doi: 10.11821/dlxb201506012 |
[Liu Y H, Xu Y. Geographical identification and classification of multi-dimensional poverty in rural China[J]. Acta Geographica Sinica, 2015,70(6):993-1007.] | |
[21] | 王艳慧, 钱乐毅, 段福洲. 县级多维贫困度量及其空间分布格局研究: 以连片特困区扶贫重点县为例[J]. 地理科学, 2013,33(12):1489-1497. |
[Wang Y H, Qian L Y, Duan F Z. Multidimensional poverty measurement and spatial distribution pattern at the country scale: A case study on key country from national contiguous special poverty-stricken areas[J]. Scientia Geographica Sinica, 2013,33(12):1489-1497.] | |
[22] | 张慧芝, 刘月. 滦河流域民族聚居区生态贫困的脱贫路径[J]. 民族学刊, 2018, 9(6): 11-17, 98-100. |
[Zhang H Z, Liu Y. Exploration of the path of anti-ecological poverty in the ethnic areas of the Luanhe River Basin[J]. Journal of Ethnology, 2018, 9(6): 11-17, 98-100.] | |
[23] | 王睿, 洪菊花, 骆华松, 等. 典型生态脆弱区生态环境与贫困耦合分析: 以四川省藏区为例[J]. 水土保持通报, 2020,40(3):125-132. |
[Wang R, Hong J H, Luo H S, et al. Coupling analysis of ecological environment and poverty in typical ecologically fragile areas: A case study of Tibetan area, Sichuan Province[J]. Bulletin of Soil and Water Conservation, 2020,40(3):125-132.] | |
[24] | 李响, 齐文平, 谭畅, 等. 生态环境脆弱性与多维贫困的耦合关系: 基于广西河池市1586个贫困村的实证分析[J]. 应用生态学报, 2019,30(12):4303-4312. |
[Li X, Qi W P, Tan C, et al. Coupling between ecological environment vulnerability and multidimensional poverty: An empirical analysis from 1586 poverty-stricken villages in Hechi City, Guangxi, Southwest China[J]. Chinese Journal of Applied Ecology, 2019,30(12):4303-4312.] | |
[25] |
程欣, 帅传敏, 王静, 等. 生态环境和灾害对贫困影响的研究综述[J]. 资源科学, 2018,40(4):676-697.
doi: 10.18402/resci.2018.04.03 |
[Cheng X, Shuai C M, Wang J, et al. The impact of eco-environment and disaster factors on poverty: A review[J]. Resources Science, 2018,40(4):676-697.] | |
[26] |
牛亚琼, 王生林. 甘肃省脆弱生态环境与贫困的耦合关系[J]. 生态学报, 2017,37(19):6431-6439.
doi: 10.5846/stxb201607191469 |
[Niu Y Q, Wang S L. Research of the coupling relationship between the vulnerable ecological environment and poverty in Gansu Province[J]. Acta Ecologica Sinica, 2017,37(19):6431-6439.] | |
[27] | 张芷蔧. 武陵山片区生态贫困测度与空间格局[J]. 知识经济, 2017, (24):11-12. |
[Zhang Z H. Measurement and spatial pattern of ecological poverty in Wuling Mountain Area[J]. Knowledge Economy, 2017, (24):11-12.] | |
[28] | 曾永明, 张果. 基于GIS和BP神经网络的区域农村贫困空间模拟分析: 一种区域贫困程度测度新方法[J]. 地理与地理信息科学, 2011,27(2):70-75. |
[Zeng Y M, Zhang G. Spatial simulating in regional rural poverty based on GIS and BP neural network: A new appraisement method on regional rural poverty[J]. Geography and Geo-Information Science, 2011,27(2):70-75.] | |
[29] | 李双成, 许月卿, 傅小锋. 基于GIS和ANN的中国区域贫困化空间模拟分析[J]. 资源科学, 2005,27(4):76-81. |
[Li S C, Xu Y Q, Fu X F. Spatial simulation using GIS and ANN for regional pauperization in China[J]. Resources Science, 2005,27(4):76-81.] | |
[30] |
刘一明, 胡卓玮, 赵文吉, 等. 基于BP神经网络的区域贫困空间特征研究: 以武陵山连片特困区为例[J]. 地球信息科学学报, 2015,17(1):69-77.
doi: 10.3724/SP.J.1047.2015.00069 |
[Liu Y M, Hu Z W, Zhao W J, et al. Research on spatial characteristics of regional poverty based on BP neural network: A case study of Wuling Mountain Area[J]. Journal of Geo-Information Science, 2015,17(1):69-77.] | |
[31] | 刘玥, 帅传敏, 程欣, 等. 基于DSR模型的三峡库区贫困的时空演变分析: 生态减贫视角[J]. 经济地理, 2017,37(7):156-165. |
[Liu Y, Shuai C M, Cheng X, et al. Spatiotemporal changes of poverty in the Three Gorges Reservoir Region: Perspective of ecological poverty reduction[J]. Economic Geography, 2017,37(7):156-165.] | |
[32] |
Liu Y S, Liu J L, Zhou Y. Spatio-temporal patterns of rural poverty in China and targeted poverty alleviation strategies[J]. Journal of Rural Studies, 2017,52:66-75.
doi: 10.1016/j.jrurstud.2017.04.002 |
[33] |
Okwi P O, Ndeng’e G, Kristjanson P, et al. Spatial determinants of poverty in rural Kenya[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007,104(43):16769-16774.
doi: 10.1073/pnas.0611107104 pmid: 17942704 |
[34] | 黄国勇, 张敏, 夏咏, 等. 新疆边境贫困县自然地理环境影响因素实证分析[J]. 干旱区地理, 2015,38(4):814-820. |
[Huang G Y, Zhang M, Xia Y, et al. Poor effect test of natural geographical environment in arid areas quantile regression method based on panel data[J]. Arid Land Geography, 2015,38(4):814-820.] | |
[35] | Bird K, McKay A, Shinyekwa I. Isolation and Poverty: The Relationship between Spatially Differentiated Access to Goods and Services and Poverty[R]. London: Overseas Development Institute, 2010. |
[36] |
高军波, 喻超, 戈大专, 等. 不同地理环境下农户致贫机理的多尺度比较: 以河南省为例[J]. 资源科学, 2019,41(9):1690-1702.
doi: 10.18402/resci.2019.09.10 |
[Gao J B, Yu C, Ge D Z, et al. Multiscale analysis of poverty creation for farming households in different geographical environments: A case study of Henan Province[J]. Resources Science, 2019,41(9):1690-1702.] | |
[37] | 周蕾, 熊礼阳, 王一晴, 等. 中国贫困县空间格局与地形的空间耦合关系[J]. 经济地理, 2017,37(10):157-166. |
[Zhou L, Xiong L Y, Wang Y Q, et al. Spatial distribution of poverty-stricken counties in China and their natural topographic characteristics and controlling effects[J]. Economic Geography, 2017,37(10):157-166.] | |
[38] | 杜国明, 姜莹莹, 孙晓兵, 等. 黑龙江省县域贫困空间格局及其影响因素分析[J]. 农业现代化研究, 2018,39(3):460-467. |
[Du G M, Jiang Y Y, Sun X B, et al. County level poverty pattern and influencing factors in Heilongjiang Province[J]. Research of Agricultural Modernization, 2018,39(3):460-467.] | |
[39] | 唐梦莹. 苍溪县贫困特征及影响因素研究[D]. 成都: 成都理工大学, 2018. |
[Tang M Y. A Study of Characteristics and Influencing Factors of Poverty in Cangxi County[D]. Chengdu: Chengdu University of Technology, 2018.] | |
[40] | 张大维. 集中连片少数民族困难社区的灾害与贫困关联研究: 基于渝鄂湘黔交界处149个村的调查[J]. 内蒙古社会科学, 2011,32(5):127-132. |
[Zhang D W. A study on the relationship between disaster and poverty in a concentrated and contiguous minority community based on a survey of 149 villages at the juncture of Chongqing, Hubei, Hunan and Guizhou[J]. Inner Mongolia Social Sciences, 2011,32(5):127-132.] | |
[41] | 杨浩, 庄天慧, 蓝红星. 气象灾害对贫困地区农户脆弱性影响研究: 基于全国592个贫困县53271户的分析[J]. 农业技术经济, 2016, (3):105-114. |
[Yang H, Zhuang T H, Lan H X. Study on the impact of meteorological disasters on the vulnerability of farmers in poverty-stricken areas based on the analysis of 53271 households in 592 poverty-stricken counties in China[J]. Journal of Agrotechnical Economics, 2016, (3):105-114.] | |
[42] |
Schleicher J, Schaafsma M, Burgess N D, et al. Poorer without it? The neglected role of the natural environment in poverty and wellbeing[J]. Sustainable Development, 2017, DOI: 10.1002/sd.1692.
doi: 10.1242/dev.113167 pmid: 25605779 |
[43] |
Zhang H M, Xu Z D, Wu K, et al. Multi-dimensional poverty measurement for photovoltaic poverty alleviation areas: Evidence from pilot counties in China[J]. Journal of Cleaner Production, 2019, DOI: 10.1016/j.jclepro.2019.118382.
doi: 10.1016/j.jclepro.2020.124548 pmid: 33071476 |
[44] | 李静怡, 王艳慧. 吕梁地区生态环境质量与经济贫困的空间耦合特征[J]. 应用生态学报, 2014,25(6):1715-1724. |
[Li J Y, Wang Y H. Spatial coupling characteristics of eco-environment quality and economic poverty in Luliang area[J]. The Journal of Applied Ecology, 2014,25(6):1715-1724.] | |
[45] |
Gao Y N, Li Q. A segmented particle swarm optimization convolutional neural network for land cover and land use classification of remote sensing images[J]. Remote Sensing Letters, 2019,10(12):1182-1191.
doi: 10.1080/2150704X.2019.1671633 |
[46] |
Jaffe L, Zelinski M, Sakla W. Remote sensor design for visual recognition with convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, DOI: 10.1109/TGRS.2019.2925813.
doi: 10.1109/TGRS.2006.890579 pmid: 18270555 |
[47] | Park K H, Zhao Y H, Lin Y H. Deep learning based land cover classification using convolutional neural network: A case study of Korea[J]. Journal of the Korean Geographical Society, 2019,54(1):1-16. |
[48] |
Stathakis D, Kanellopoulos I. Global elevation ancillary data for land-use classification using granular neural networks[J]. Photogrammetric Engineering and Remote Sensing, 2008,74(1):55-63.
doi: 10.14358/PERS.74.1.55 |
[49] |
Azadi S, Karimi-Jashni A. Verifying the performance of artificial neural network and multiple linear regression in predicting the mean seasonal municipal solid waste generation rate: A case study of Fars Province, Iran[J]. Waste Management, 2016,48:14-23.
doi: 10.1016/j.wasman.2015.09.034 pmid: 26482809 |
[50] | 陆琳, 张虹. 城市短时交通流预测仿真研究[J]. 计算机仿真, 2012,29(5):326-328. |
[Lu L, Zhang H. Simulation of city short-time traffic flow forecasting[J]. Computer Simulation, 2012,29(5):326-328.] | |
[51] | 马慧强, 廉倩文, 论宇超, 等. 基于BP神经网络的旅游经济系统脆弱性省际空间分异[J]. 资源科学, 2019,41(12):2248-2261. |
[Ma H Q, Lian Q W, Lun Y C, et al. Spatial differentiation of tourism economic system vulnerability based on BP neural network in different provinces of China[J]. Resources Science, 2019,41(12):2248-2261.] | |
[52] | 孙世军, 严晓飞, 崔朋, 等. 基于BP人工神经网络的小城镇生态规划研究: 以梅河口市中和镇为例[J]. 经济地理, 2010,30(9):1473-1477, 1491. |
[Sun S J, Yan X F, Cui P, et al. Ecological planning for small town based on BP artificial neural networks: Taking Zhonghe Town of Meihekou City as an example[J]. Economic Geography, 2010,30(9):1473-1477, 1491.] | |
[53] | 孙湛, 马海涛. 基于BP神经网络的京津冀城市群可持续发展综合评价[J]. 生态学报, 2018,38(12):4434-4444. |
[Sun Z, Ma H T. Assessment of the sustainable development of the Beijing-Tianjin-Hebei urban agglomeration based on a back propagation neural network[J]. Acta Ecologica Sinica, 2018,38(12):4434-4444.] | |
[54] | Yu B H, Lu C H. Assessment of ecological vulnerability on the Tibetan Plateau[J]. Geographical Research, 2011,30(12):2289-2295. |
[55] | 国务院扶贫开发领导小组办公室. 中国农村扶贫开发纲要(2011-2020) [R]. 北京: 国务院扶贫开发领导小组办公室, 2011. |
[State Council Leading Group Office of Poverty Alleviation and Development. New Framework for China Rural Poverty Alleviation and Development(2011-2020) [R]. Beijing: The State Council Leading Group Office of Poverty Alleviation and Development, 2011.] | |
[56] | 周开利. 神经网络模型及其MATLAB仿真程序设计[M]. 北京: 清华大学出版社, 2005. |
[Zhou K L. Neural Network Model and MATLAB Simulation Program Design[M]. Beijing: Tsinghua University Press, 2005.] | |
[57] | 李双成, 郑度. 人工神经网络模型在地学研究中的应用进展[J]. 地球科学进展, 2003,18(1):68-76. |
[Li S C, Zheng D. Applications of artificial neural networks to geosciences: Review and prospect[J]. Advance in Earth Sciences, 2003,18(1):68-76.] |
[1] | 强文丽, 张翠玲, 刘爱民, 成升魁, 王祥, 李凡. 全球农产品贸易的虚拟耕地资源流动演变及影响因素[J]. 资源科学, 2020, 42(9): 1704-1714. |
[2] | 韩璟, 陈泽秀, 卢新海. 中国海外耕地投资发展的时空格局演变与影响因素[J]. 资源科学, 2020, 42(9): 1715-1727. |
[3] | 张立新, 毕旭, 黄志基. 经济转型背景下城市工业用地利用效率——以长江经济带城市为例[J]. 资源科学, 2020, 42(9): 1728-1738. |
[4] | 王萍萍, 韩一军, 张益. 中国农业化肥施用技术效率演变特征及影响因素[J]. 资源科学, 2020, 42(9): 1764-1776. |
[5] | 黄晶, 薛东前, 代兰海. 农产品主产区村镇建设资源环境承载力空间分异及影响因素——以甘肃省临泽县为例[J]. 资源科学, 2020, 42(7): 1262-1274. |
[6] | 杨凯悦, 宋永永, 薛东前. 黄土高原乡村聚落用地时空演变与影响因素[J]. 资源科学, 2020, 42(7): 1311-1324. |
[7] | 唐健雄, 马梦瑶. 中国工业旅游示范点空间分布特征及影响因素[J]. 资源科学, 2020, 42(6): 1188-1198. |
[8] | 岳立, 薛丹. 黄河流域沿线城市绿色发展效率时空演变及其影响因素[J]. 资源科学, 2020, 42(12): 2274-2284. |
[9] | 刘晨光. 黄河流域专业村空间格局演化及影响因素[J]. 资源科学, 2020, 42(12): 2300-2313. |
[10] | 张新, 刘家明, 朱鹤, 李涛. 北京郊区参与型体育旅游资源时空演化特征及影响因素[J]. 资源科学, 2020, 42(11): 2196-2209. |
[11] | 姜正龙, 王兵, 姜玲秀, 陈映, 刘玖芬, 任永吉, 张贺. 中国海岸带自然资源区划研究[J]. 资源科学, 2020, 42(10): 1900-1910. |
[12] | 乔家君, 朱乾坤, 辛向阳. 黄河流域农区贫困特征及其影响因素[J]. 资源科学, 2020, 42(1): 184-196. |
[13] | 王永卿,王来峰,邓洪星,董凯. 湖北省绿色矿山建设影响因素及其效果分析[J]. 资源科学, 2019, 41(8): 1513-1525. |
[14] | 张诩, 乔娟, 沈鑫琪. 养殖废弃物治理经济绩效及其影响因素——基于北京市养殖场(户)视角[J]. 资源科学, 2019, 41(7): 1250-1261. |
[15] | 孟小燕. 基于结构方程的居民生活垃圾分类行为研究[J]. 资源科学, 2019, 41(6): 1111-1119. |
|