资源科学 ›› 2020, Vol. 42 ›› Issue (11): 2119-2131.doi: 10.18402/resci.2020.11.06

• 海洋资源与北极航道专栏 • 上一篇    下一篇

1936—2018年环北极典型流域气温与降水时空变化

黄其威1,2(), 刘诗奇1, 王平1,2(), 王田野3, 于静洁1,2, 陈晓龙4, 杨林生2,5   

  1. 1.中国科学院地理科学与资源研究所陆地水循环及地表过程重点实验室,北京 100101
    2.中国科学院大学,北京 100049
    3.郑州大学水利科学与工程学院,郑州 450001
    4.中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室(LASG),北京 100029
    5.中国科学院地理科学与资源研究所陆地表层格局与模拟院重点实验室,北京 100101
  • 收稿日期:2020-09-02 修回日期:2020-10-06 出版日期:2020-11-25 发布日期:2021-01-25
  • 通讯作者: 王平
  • 作者简介:黄其威,男,河南信阳人,硕士生,研究方向为水文水资源。E-mail: huangqw. 19s@igsnrr.ac.cn
  • 基金资助:
    国家科技基础资源调查专项课题(2017FY101302);国家科技基础资源调查专项课题(2017FY101301);中国科学院战略性先导科技专项子课题(XDA2003020101);中国科学院重点部署项目(ZDRW-ZS-2017-4);中国博士后科学基金面上项目(O7Z76095Z1)

Spatiotemporal variability of temperature and precipitation in typical Pan-Arctic basins, 1936-2018

HUANG Qiwei1,2(), LIU Shiqi1, WANG Ping1,2(), WANG Tianye3, YU Jingjie1,2, CHEN Xiaolong4, YANG Linsheng2,5   

  1. 1. Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, CAS,Beijing 100101, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
    3. School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou 450001, China
    4. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, CAS, Beijing 100029, China
    5. Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
  • Received:2020-09-02 Revised:2020-10-06 Online:2020-11-25 Published:2021-01-25
  • Contact: WANG Ping

摘要:

降水是环北极地区水资源的主要来源。定量分析气温与降水时空变化是深入理解环北极地区陆地水循环过程的基础。本文选取鄂毕河、叶尼塞河、勒拿河流域为对象,利用167个俄罗斯国家气象站点1936—2018年的气温与降水观测数据,结合线性趋势分析和Mann-Kendall突变点检验,揭示环北极典型流域气温与降水的时空变化特征。结果表明:①鄂毕河、叶尼塞河和勒拿河流域多年平均气温为0.06 ℃、-2.98 ℃、-7.41 ℃,年均增温速率分别为0.27 ℃/10 a,0.22 ℃/10 a,0.15 ℃/10 a。年内极端最低温(TNn)上升尤为明显,约为年均增温速率的1.3倍,春、冬季增温速率大于夏、秋两季;②鄂毕河、叶尼塞河和勒拿河流域多年平均降水量为496 mm、428 mm、369 mm;年降水量显著增加,其中叶尼塞河流域增速较慢(3.36 mm/10 a),而鄂毕河(13.02 mm/10 a)和勒拿河(9.59 mm/10 a)流域增速较快,降水增加集中在春、秋、冬三季;③在空间上,增温较快的区域集中在西伯利亚高原和山地,最大增温速率达0.60 ℃/10 a,而平原地区普遍偏低;降水的空间差异大,西伯利亚南部高海拔地区(>1100 m)年降水量达1000 mm左右,北部低海拔地区普遍为300~ 600 mm。上述观测数据指示,环北极流域正在变暖变湿,且空间差异大,可能与“北极放大”及流域下垫面条件有关。

关键词: 气候变化, 北极放大, 气温, 降水, 趋势分析, 环北极流域

Abstract:

Precipitation is the main source of water resources in the Pan-Arctic regions. Temperature and precipitation are important indicators of climate change, and quantitative analysis of their spatial and temporal variations is important for a deeper understanding of the water cycling process in the Arctic and Pan-Arctic regions. In this study, we used the temperature and precipitation observation data from 167 meteorological stations in the Ob, Yenisei, and Lena River basins during 1936-2018, and combined linear trend analysis and Mann-Kendall change point detection to reveal the spatial and temporal changes of temperature and precipitation in typical Pan-Arctic basins, as well as the interrelationship between temperature and precipitation. The results show that: (1) During 1936-2018, the multi-year mean temperature at the meteorological stations in the Ob, Yenisei, and Lena River basins was 0.06 °C, -2.98 °C and -7.41 °C, respectively, with a significant upward trend in the annual mean temperature, and the warming rate was 0.27 °C/10 a, 0.22 °C/10 a and 0.15 °C/10 a. Temperature increases were greater in the spring and winter than in the summer and autumn, and the TNn warming rate was about 1.3 times that the annual average; (2) The multi-year mean precipitation in the Ob, Yenisei, and Lena of River basins was 496 mm, 428 mm, and 369 mm, respectively, with a significant increasing trend. The increase rate in the Yenisei River basin was relatively slow (3.36 mm/10 a), while those of the Ob (13.02 mm/10 a) and Lena (9.59 mm/10 a) River basin were faster. Precipitation increases more in the spring, autumn, and winter than in the summer. (3) The faster warming regions were mainly in the Central Siberian Plateau and the East Siberian Highlands, with a maximum warming rate of 0.60 °C/10 a, while the warming rate in the West Siberia Plain was relatively low. The spatial differences in precipitation were large, with annual precipitation of about 1000 mm in southern regions of Siberia (altitude >1100 m). These changes in temperature and precipitation indicate that the Pan-Arctic region is warming and wetting, with large spatial variations, possibly related to the “Arctic Amplification” and sub-basin conditions. Under the background of continued global warming, changes in temperature and precipitation of the Pan-Arctic region will require further observation and in-depth study.

Key words: climate change, Arctic Amplification, temperature, precipitation, linear trend analysis, Pan-Arctic basins