资源科学 ›› 2020, Vol. 42 ›› Issue (10): 1987-1997.doi: 10.18402/resci.2020.10.15
韩春坛1,2(), 王磊3, 陈仁升1(
), 刘章文1, 刘俊峰1, 阳勇1, 吕汉秦4
收稿日期:
2020-06-03
修回日期:
2020-08-27
出版日期:
2020-10-25
发布日期:
2020-12-25
通讯作者:
陈仁升
作者简介:
韩春坛,男,宁夏固原人,高级工程师,主要从事寒区降水和凝结水过程观测研究。E-mail: 基金资助:
HAN Chuntan1,2(), WANG Lei3, CHEN Rensheng1(
), LIU Zhangwen1, LIU Junfeng1, YANG Yong1, LV Hanqin4
Received:
2020-06-03
Revised:
2020-08-27
Online:
2020-10-25
Published:
2020-12-25
Contact:
CHEN Rensheng
摘要:
降水是地表及地下水资源的根本补给源,直接影响水资源的时空分布格局以及山地冰冻圈的分布和发育。祁连山高寒山区是降水和产流高值区,降水特征受地形影响较大,但现有的降水观测网络还无法合理反映降水特征在地形垂直梯度上的变化。为了确定降水变化如何影响高寒山区的水文和生态过程,需要从流域垂直梯度观测降水形态和降水量的变化。本文概述了由T-200BM3组成的祁连山高山区降水格网化、梯度化、自动化观测网络,并在八一冰川冰缘区建立高寒山区降水标准校正场,采用世界气象组织(WMO)推荐的降水/降雪观测标准(DFIR)校正八一冰川区域降水量。在八一冰川区域对地面降水数据产品作初步分析,并利用高海拔站点数据评估了GPM和TRMM降水数据产品在祁连山区的适用性。该降水观测网络的建设对进一步认识高寒山区不同海拔雨雪和水汽变化规律,精细化评估高寒山区降水资源具有重要意义,并可为全国的降水资源综合观测和评估提供方法和降水数据产品。
韩春坛, 王磊, 陈仁升, 刘章文, 刘俊峰, 阳勇, 吕汉秦. 祁连山高寒山区降水观测网络及其数据应用[J]. 资源科学, 2020, 42(10): 1987-1997.
HAN Chuntan, WANG Lei, CHEN Rensheng, LIU Zhangwen, LIU Junfeng, YANG Yong, LV Hanqin. Precipitation observation network and its data application in the alpine region of Qilian Mountains[J]. Resources Science, 2020, 42(10): 1987-1997.
表1
祁连山高寒山区降水观测网络的位置站点信息"
站名 | 经度/°E | 纬度/° N | 海拔/m | 位置描述 |
---|---|---|---|---|
BYDFIR | 98.88 | 39.01 | 4650 | 八一冰川DFIR |
BY1 | 98.88 | 39.01 | 4650 | 八一冰川1 |
BY2 | 98.82 | 39.01 | 4450 | 八一冰川2 |
BY3 | 98.80 | 38.97 | 4145 | 八一冰川3 |
BY4 | 98.81 | 38.89 | 3850 | 八一冰川4 |
HCH | 101.76 | 37.71 | 3565 | 皇城 |
HLGX1 | 99.85 | 38.24 | 3725 | 葫芦沟西1 |
HLGX2 | 99.85 | 38.23 | 4055 | 葫芦沟西2 |
HLGX3 | 99.86 | 38.22 | 4315 | 葫芦沟西3 |
STG1 | 99.89 | 38.28 | 3190 | 石头沟1 |
STG2 | 99.88 | 38.29 | 3510 | 石头沟2 |
STG3 | 99.88 | 38.30 | 3840 | 石头沟3 |
STG4 | 99.89 | 38.33 | 4070 | 石头沟4 |
STG5 | 99.89 | 38.35 | 4400 | 石头沟5 |
JYL | 101.11 | 37.84 | 3845 | 景阳岭 |
KKL | 99.27 | 38.28 | 4160 | 柯柯里 |
NCYK | 101.87 | 37.54 | 4050 | 宁缠垭口 |
SULI1 | 98.32 | 38.47 | 3890 | 苏里 |
SULI2 | 97.96 | 38.77 | 3635 | 苏里 |
SNYK | 99.48 | 38.61 | 4200 | 肃南垭口 |
YL | 98.75 | 38.79 | 4155 | 央隆 |
ARYK | 100.66 | 38.09 | 4020 | 宁缠垭口 |
BYG | 100.27 | 38.27 | 3895 | 白杨沟 |
表2
八一冰川剖面不同时间尺度通过显著性检验的样本量"
3 h | 6 h | 12 h | 1 d | 2 d | 5 d | 10 d | 15 d | 1 m | ||
---|---|---|---|---|---|---|---|---|---|---|
总样本 | 样本量 | 980 | 574 | 335 | 199 | 126 | 61 | 34 | 23 | 12 |
p<0.01样本占比/% | 0.20 | 0.70 | 0.60 | 1.01 | 0.79 | 1.64 | 0 | 0 | 0 | |
p<0.05样本占比/% | 6.43 | 6.45 | 5.97 | 6.03 | 6.35 | 3.28 | 11.76 | 13.04 | 16.67 | |
春季 | 样本量 | 274 | 152 | 86 | 53 | 34 | 16 | 8 | 6 | 3 |
p<0.01样本占比/% | 0.36 | 0.66 | 1.16 | 1.89 | 2.94 | 6.25 | 0 | 0 | 0 | |
p<0.05样本占比/% | 6.57 | 6.58 | 3.49 | 9.43 | 5.88 | 6.25 | 12.50 | 33.33 | 33.33 | |
夏季 | 样本量 | 420 | 244 | 144 | 81 | 43 | 17 | 6 | 6 | 3 |
p<0.01样本占比/% | 0.24 | 0.82 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
p<0.05样本占比/% | 5.71 | 4.92 | 6.25 | 4.94 | 6.98 | 5.88 | 0 | 0 | 0 | |
秋季 | 样本量 | 180 | 107 | 63 | 40 | 28 | 16 | 10 | 6 | 3 |
p<0.01样本占比/% | 0 | 0.93 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
p<0.05样本占比/% | 6.67 | 7.48 | 11.11 | 7.50 | 10.71 | 12.50 | 10.00 | 16.67 | 33.33 | |
冬季 | 样本量 | 106 | 71 | 40 | 25 | 19 | 12 | 10 | 6 | 3 |
p<0.01样本占比/% | 0 | 0 | 2.50 | 4.00 | 0 | 0 | 0 | 0 | 0 | |
p<0.05样本占比/% | 0 | 9.86 | 2.50 | 0 | 5.26 | 0 | 20.00 | 0 | 0 |
[1] |
Tuo Y, Duan Z, Disse M, et al. Evaluation of precipitation input for SWAT modeling in alpine catchment: A case study in the Adige River Basin (Italy)[J]. Science of The Total Environment, 2016,573:66-82.
doi: 10.1016/j.scitotenv.2016.08.034 |
[2] |
Chen R S, Wang G, Yang Y, et al. Effects of cryospheric change on alpine hydrology: Combining a model with observations in the upper reaches of the Hei River, China[J]. Journal of Geophysical Research Atmospheres, 2018,123(1):3414-3442.
doi: 10.1002/jgrd.v123.7 |
[3] |
Schneider U, Ziese M, Meyer-Christoffer A, et al. The new portfolio of global precipitation data products of the Global Precipitation Climatology Centre suitable to assess and quantify the global water cycle and resources[J]. Proceedings of the International Association of Hydrological Sciences, 2016,374:29-34.
doi: 10.5194/piahs-374-29-2016 |
[4] | Sorooshian S, Lawford R, Try P, et al. Water and energy cycles: Investigating the links[J]. World Meteorological Organization Bulletin, 2005,54(2):58-64. |
[5] |
Yong B, Ren L L, Hong Y, et al. Hydrologic evaluation of multisatellite precipitation analysis standard precipitation products in basins beyond its inclined latitude band: A case study in Laohahe Basin, China[J]. Water Resources Research, 2010, DOI: 10.1029/2009WR008965.
doi: 10.1029/2017WR022485 pmid: 30906078 |
[6] |
Darand M, Amanollahi J, Zandkarimi S. Evaluation of the performance of TRMM multi-satellite precipitation analysis (TMPA) estimation over Iran[J]. Atmospheric Research, 2017,190:121-127.
doi: 10.1016/j.atmosres.2017.02.011 |
[7] | 王磊, 陈仁升, 宋耀选. 基于Γ函数的祁连山葫芦沟流域湿季小时降水统计特征[J]. 地球科学进展, 2016,31(8):840-848. |
[ Wang L, Chen R S, Song Y X. Study of statistical characteristics of wet season hourly rainfall at Hulu Watershed with Γ function in Qilian Mountains[J]. Advances in Earth Science, 2016,31(8):840-848.] | |
[8] |
Bhatt B C, Nakamura K. Characteristics of monsoon rainfall around the Himalayas revealed by TRMM precipitation radar[J]. Monthly Weather Review, 2005,133(1):149-165.
doi: 10.1175/MWR-2846.1 |
[9] |
Yuan F, Zhang L, Win K W W, et al. Assessment of GPM and TRMM multi-satellite precipitation products in streamflow simulations in a data-sparse mountainous watershed in Myanmar[J]. Remote Sensing, 2017,9(3):302-302.
doi: 10.3390/rs9030302 |
[10] |
Han C T, Chen R S, Liu Z W, et al. Cryospheric hydrometeorology observation in the Hulu Catchment (CHOICE), Qilian mountains, China[J]. Vadose Zone Journal, 2018, DOI: 10.2136/vzj2018.03.0058.
pmid: 21617737 |
[11] |
Wang L, Chen R S, Han C T, et al. An improved spatial-temporal downscaling method for TRMM precipitation datasets in alpine regions: A case study in Northwestern China’s Qilian Mountains[J]. Remote Sensing, 2019,11(7):870-870.
doi: 10.3390/rs11070870 |
[12] | 陈仁升, 康尔泗, 丁永建. 中国高寒区水文学中的一些认识和参数[J]. 水科学进展, 2014,25(3):307-317. |
[ Chen R S, Kang E S, Ding Y J. Some knowledge on and parameters of China’s alpine hydrology[J]. Advances in Water Science, 2014,25(3):307-317.] | |
[13] | 汤秋鸿, 兰措, 苏凤阁, 等. 青藏高原河川径流变化及其影响研究进展[J]. 科学通报, 2019,64(27):2807-2821. |
[ Tang Q H, Lan C, Su F G, et al. Streamflow change on the Qinghai-Tibet Plateau and its impacts[J]. Chinese Science Bulletin, 2019,64(27):2807-2821.] | |
[14] | 国家林业和草原局. 祁连山国家公园总体规划(征求意见稿)[EB/OL]. (2019-02-15) [2020-06-03]. http://www.forestry.gov.cn/main/198/20190215/091344699121299.html. |
[ State Forestry and Grassland Administration. Master Plan of Qilian Mountain National Park (Draft for Comments)[EB/OL]. (2019-02-15) [2020-06-03]. http://www.forestry.gov.cn/main/198/20190215/091344699121299.html.] | |
[15] | 曹广民, 林丽, 张法伟, 等. 长期生态学研究和试验示范为高寒草地的适应性管理提供理论与技术支撑[J]. 中国科学院院刊, 2018,33(10):1115-1126. |
[ Cao G M, Lin L, Zhang F W, et al. Long-term ecological research and experimental demonstration provide theoretical and technical support for adaptive management of alpine grassland[J]. Bulletin of Chinese Academy of Sciences, 2018,33(10):1115-1126.] | |
[16] | 李新, 勾晓华, 王宁练, 等. 祁连山绿色发展: 从生态治理到生态恢复[J]. 科学通报, 2019,64(27):2928-2937. |
[ Li X, Gou X H, Wang N L, et al. Tightening ecological management facilitates green development in the Qilian Mountains[J]. Chinese Science Bulletin, 2019,64(27):2928-2937.] | |
[17] | 孙美平, 刘时银, 姚晓军, 等. 近 50 年来祁连山冰川变化: 基于中国第一、二次冰川编目数据[J]. 地理学报, 2015,70(9):1402-1414. |
[ Sun M P, Lin S Y, Yao X J, et al. Glacier changes in the Qilian Mountains in the past half century: Based on the revised first and second Chinese glacier inventory[J]. Acta Geographica Sinica, 2015,70(9):1402-1414.] | |
[18] | Ohumra A. Enhanced temperature variability in high-altitude climate change[J]. Theoretical and Applied Climatology, 2012,110(4):499-508. |
[19] |
Yang K, Wu H, Qin J, et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review[J]. Global and Planetary Change, 2014,112:79-91.
doi: 10.1016/j.gloplacha.2013.12.001 |
[20] |
Pepin N, Bradley R S, Diaz H F, et al. Elevation-dependent warming in mountain regions of the world[J]. Nature Climate Change, 2015,5:424-430.
doi: 10.1038/nclimate2563 |
[21] |
Euskirchen E, Turetsky M, O’donnell J, et al. Snow, permafrost, ice cover, and climate change[J]. Global Environmental Change, 2014, DOI: 10.1007/978-94-007-5784-4_110.
doi: 10.1016/j.gloenvcha.2016.11.005 pmid: 28367001 |
[22] | Fichot C G, Kaiser K, Hooker S B, et al. Pan-Arctic distributions of continental runoff in the Arctic Ocean[J]. Scientific Reports, 2013, (3):1053-1053. |
[23] | Qiu Y B, Massimo M, Li X, et al. Observing and understanding high mountain and cold regions using big earth data[J]. Bulletin of Chinese Academy of Sciences, 2017,32(Z1):82-94. |
[24] |
Guo D L, Wang H J. CMIP5 permafrost degradation projection: A comparison among different regions[J]. Journal of Geophysical Research: Atmospheres, 2016,121(9):4499-4517.
doi: 10.1002/jgrd.v121.9 |
[25] |
Huang X D, Deng J, Wang W, et al. Impact of climate and elevation on snow cover using integrated remote sensing snow products in Tibetan Plateau[J]. Remote Sensing of Environment, 2017,190:274-288.
doi: 10.1016/j.rse.2016.12.028 |
[26] | IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, Cambridge, 2013. |
[27] | Qin D H, Xiao C D. Global Climate Change and Cryospheric Evolution in China[C]. Grenoble: European Research Course on Atmospheres, 2008. |
[28] |
Zacharias S, Bogena H, Samaniego L, et al. A network of terrestrial environmental observatories in Germany[J]. Vadose Zone Journal, 2011,10(3):955-973.
doi: 10.2136/vzj2010.0139 |
[29] |
Bogena H R, Bol R, Borchard N, et al. A terrestrial observatory approach to the integrated investigation of the effects of deforestation on water, energy, and matter fluxes[J]. Science China Earth Sciences, 2015,58(1):61-75.
doi: 10.1007/s11430-014-4911-7 |
[30] |
Jensen K H, Illangasekare T H. HOBE: A hydrological observatory[J]. Vadose Zone Journal, 2011,10(1):1-7.
doi: 10.2136/vzj2011.0006 |
[31] |
Blöschl G, Blaschke A P, Broer M, et al. The Hydrological Open Air Laboratory (HOAL) in Petzenkirchen: A hypojournal-driven observatory[J]. Hydrology and Earth System Sciences, 2016,20(1):227-255.
doi: 10.5194/hess-20-227-2016 |
[32] |
Ivanov V V, Timokhov L A. Atlantic water in the arctic circulation transpolar system[J]. Russian Meteorology and Hydrology, 2019,44(4):238-249.
doi: 10.3103/S1068373919040034 |
[33] |
Debeer C M, Wheater H S, Quinton W L, et al. The changing cold regions network: Observation, diagnosis and prediction of environmental change in the Saskatchewan and Mackenzie River Basins, Canada[J]. Science China Earth Sciences, 2015,58(1):46-60.
doi: 10.1007/s11430-014-5001-6 |
[34] | Lamoureux S F, Lafrenière M J. More than just snowmelt: Integrated watershed science for changing climate and permafrost at the cape bounty arctic watershed observatory[J]. Wiley Interdisciplinary Reviews: Water, 2017, DOI: 10.1002/wat2.1255. |
[35] |
Li X, Cheng G D, Liu S Y, et al. Heihe Watershed allied telemetry experimental research (HiWATER): Scientific objectives and experimental design[J]. Bulletin of the American Meteorological Society, 2013,94(8):1145-1160.
doi: 10.1175/BAMS-D-12-00154.1 |
[36] |
Cheng G D, Li X. Integrated research methods in watershed science[J]. Science China Earth Sciences, 2015,58(7):1159-1168.
doi: 10.1007/s11430-015-5074-x |
[37] | Godsey S E, Marks D, Kormos P R, et al. Eleven years of mountain weather, snow, soil moisture and stream flow data from the rain-snow transition zone: The Johnston Draw Catchment, Reynolds Creek Experimental Watershed and Critical Zone Observatory, USA[J]. Earth System Science Data Discussions, 2017, DOI: 10.5194/essd-2017-112. |
[38] |
Trenberth K E. Changes in precipitation with climate change[J]. Climate Research, 2011,47(1):123-138.
doi: 10.3354/cr00953 |
[39] |
Yang D Q, Kane D L, Zhang Z P, et al. Bias corrections of long-term (1973-2004) daily precipitation data over the northern regions[J]. Geophysical Research Letters, 2005, DOI: 10.1029/2005GL024057.
doi: 10.1029/2020GL088533 pmid: 32836517 |
[40] |
Scaff L, Yang D Q, Li Y, et al. Inconsistency in precipitation measurements across the Alaska-Yukon border[J]. The Cryosphere Discussions, 2015,9(4):3709-3739.
doi: 10.5194/tcd-9-3709-2015 |
[41] |
Sevruk B, Ondras M, Chbila B. The WMO precipitation measurement intercomparisons[J]. Atmospheric Research, 2009,92(3):376-380.
doi: 10.1016/j.atmosres.2009.01.016 |
[42] | Chen R S, Liu J, Kang E, et al. Precipitation measurement intercomparison in the Qilian Mountains, north-eastern Tibetan Plateau[J]. The Cryosphere, 2015,9(5):1994-2008. |
[43] | 郑勤, 陈仁升, 韩春坛, 等. 祁连山TRwS204与中国标准雨量筒降水观测对比研究[J]. 高原气象, 2018,37(3):747-756. |
[ Zheng Q, Chen R S, Han C T, et al. Intercomparison study on precipitation observations of TRwS204 and Chinese standard precipitation gauge in the Qilian Mountains[J]. Plateau Meteorology, 2018,37(3):747-756.] | |
[44] | 刘启航, 黄昌. 西北内陆区水量平衡要素时空分析[J]. 资源科学, 2020,42(6):1175-1187. |
[ Liu Q H, Huang C. Spatiotemporal change of water balance components in the inland region of Northwest China, 1998-2017[J]. Resources Science, 2020,42(6):1175-1187.] | |
[45] | 贾文雄. 近50年来祁连山及河西走廊降水的时空变化[J]. 地理学报, 2012,67(5):631-644. |
[ Jia W X. Temporal and spatial changes of precipitation in Qilian Mountains and Hexi Corridor during 1960-2009[J]. Acta Geographica Sinica, 2012,67(5):631-644.] | |
[46] | 韩国军, 王玉兰, 房世波. 近 50 年青藏高原气候变化及其对农牧业的影响[J]. 资源科学, 2011,33(10):1969-1975. |
[ Han G, Wang Y, Fang S. Climate change over the Qinghai-Tibet Plateau and its impacts on local agriculture and animal husbandry in the last 50 years[J]. Resources Science, 2011,33:1969-1975.] | |
[47] |
Xu R, Tian F Q, Yang L, et al. Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan Plateau based on a high-density rain gauge network[J]. Journal of Geophysical Research Atmospheres, 2017,122(2):910-924.
doi: 10.1002/2016JD025418 |
[48] |
Su J B, Lü H S, Zhu Y H, et al. Evaluating the hydrological utility of latest IMERG products over the upper Huaihe River Basin, China[J]. Atmospheric research, 2019,225:17-29.
doi: 10.1016/j.atmosres.2019.03.025 |
[49] |
Wang X N, Ding Y J, Zhao C C, et al. Similarities and improvements of GPM IMERG upon TRMM 3B42 precipitation product under complex topographic and climatic conditions over Hexi Region, northeastern Tibetan Plateau[J]. Atmospheric Research, 2019,218:347-363.
doi: 10.1016/j.atmosres.2018.12.011 |
[50] |
Lu X Y, Wei M, Tang G Q, et al. Evaluation and correction of the TRMM 3B43V7 and GPM 3IMERGM satellite precipitation products by use of ground-based data over Xinjiang, China[J]. Environmental Earth Sciences, 2018,77(5):209-209.
doi: 10.1007/s12665-018-7378-6 |
[51] |
Speirs P, Gabella M, Berne A. A comparison between the GPM dual-frequency precipitation radar and ground: Based radar precipitation rate estimates in the Swiss Alps and Plateau[J]. Journal of Hydrometeorology, 2017,18(5):1247-1269.
doi: 10.1175/JHM-D-16-0085.1 |
[52] | Manz B, Buytaert W, Zulkafli Z, et al. TRMM-and GPM-Based Precipitation Analysis and Modelling in the Tropical Andes[C]. Vienna: EGU General Assembly Conference Abstracts, 2016. |
[53] |
Palomino-Ángel S, Anaya-Acevedo J A, Botero B A. Evaluation of 3B42V7 and IMERG daily-precipitation products for a very high-precipitation region in northwestern South America[J]. Atmospheric Research, 2019,217:37-48.
doi: 10.1016/j.atmosres.2018.10.012 |
[54] |
Sun R C, Yuan H L, Liu X L, et al. Evaluation of the latest satellite-gauge precipitation products and their hydrologic applications over the Huaihe River Basin[J]. Journal of Hydrology, 2016,536:302-319.
doi: 10.1016/j.jhydrol.2016.02.054 |
[55] |
Wang L, Chen R S, Song Y X, et al. Precipitation-altitude relationships on different timescales and at different precipitation magnitudes in the Qilian Mountains[J]. Theoretical and Applied Climatology, 2018,134(3-4):875-884.
doi: 10.1007/s00704-017-2316-1 |
[56] |
Tang G Q, Wen Y, Gao J, et al. Similarities and differences between three coexisting spaceborne radars in global rainfall and snowfall estimation[J]. Water Resources Research, 2017,53(5):3835-3853.
doi: 10.1002/2016WR019961 |
[1] | 白金中, 高闻宇, 李开明, 李忠勤, 王林, 王璞玉, 颜东海. 气候变化背景下近50年来黑河流域冰川资源变化特征分析[J]. , 2011, 33(3): 399-407. |
[2] | 戴声佩, 马中华, 王强, 张勃, 张亚宁, 邹悦. 祁连山草地植被NDVI变化及其对气温降水的旬响应特征[J]. , 2010, 32(9): 1769-1776. |
[3] | 黄诗峰, 李纪人, 李景刚, 李小涛. 基于TRMM数据和区域综合Z指数的洞庭湖流域近10年旱涝特征分析[J]. , 2010, 32(6): 1103-1110. |
[4] | 贾文雄, 刘普幸, 张克新, 张锐. 祁连山区日照时数的空间差异、突变与多尺度分析[J]. , 2010, 32(12): 2413-2418. |
|