资源科学 ›› 2020, Vol. 42 ›› Issue (8): 1592-1603.doi: 10.18402/resci.2020.08.13
董雪松1,2(), 黄健柏1,2(
), 钟美瑞1,2, 谌金宇1,2, 刘刚3, 宋益4
收稿日期:
2020-02-17
修回日期:
2020-08-02
出版日期:
2020-08-25
发布日期:
2020-10-25
通讯作者:
黄健柏
作者简介:
董雪松,女,辽宁营口人,博士生,研究方向为资源经济与管理。E-mail: 基金资助:
DONG Xuesong1,2(), HUANG Jianbai1,2(
), ZHONG Meirui1,2, CHEN Jinyu1,2, LIU Gang3, SONG Yi4
Received:
2020-02-17
Revised:
2020-08-02
Online:
2020-08-25
Published:
2020-10-25
Contact:
HUANG Jianbai
摘要:
新技术、新材料、新产业的蓬勃发展将对关键金属矿产需求产生深远影响,探讨技术进步如何影响关键金属矿产需求,从而确保关键金属矿产安全,对中国经济迈上高质量发展阶段和实现低碳转型具有一定现实意义。本文对技术进步与关键金属需求关系的文献展开了系统梳理,发现:随着资源安全成为国家重要需求问题,技术进步与关键金属需求预测研究逐渐成为热点,但现有文献量化研究较少且缺乏系统性,鉴于技术进步测度和数据获取等难点,需求预测结果的精准性有待进一步提高。本文提炼了技术进步作用于关键金属需求的3条微观影响机制,即技术进步—经济增长—关键金属、技术进步—产业结构—关键金属、技术进步—替代循环—关键金属,为后续研究提供整体分析框架;提出该领域后续研究重点,即重点关注低碳技术-关键金属、战略新兴产业-关键金属耦合问题,同时解决技术进步在理论模型和计量模型中的测度问题,推进新技术革命背景下关键金属需求预测分析框架的构建。
董雪松, 黄健柏, 钟美瑞, 谌金宇, 刘刚, 宋益. 技术进步对关键金属矿产需求影响的研究综述[J]. 资源科学, 2020, 42(8): 1592-1603.
DONG Xuesong, HUANG Jianbai, ZHONG Meirui, CHEN Jinyu, LIU Gang, SONG Yi. A review on the impact of technological progress on critical metal mineral demand[J]. Resources Science, 2020, 42(8): 1592-1603.
[1] | 汪灵. 战略性非金属矿产的思考[J]. 矿产保护与利用, 2019,39(6):1-7. |
[ Wang L. Considerations on strategic non-metallic mineral resources[J]. Conservation and Utilization of Mineral Resources, 2019,39(6):1-7.] | |
[2] | 唐金荣, 杨宗喜, 周平, 等. 国外关键矿产战略研究进展及其启示[J]. 地质通报, 2014,33(9):1445-1453. |
[ Tang J R, Yang Z X, Zhou P, et al. The progress in the strategic study of critical minerals and its implications[J]. Geological Bulletin of China, 2014,33(9):1445-1453.] | |
[3] | 王登红. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J]. 地质学报, 2019,93(6):1189-1209. |
[ Wang D H. Study on critical mineral resources: Significance of research, determination of types, attributes of resources, progress of prospecting, problems of utilization, and direction of exploitation[J]. Acta Geologica Sinica, 2019,93(6):1189-1209.] | |
[4] | 张所续, 刘伯恩, 马朋林. 美国关键矿产战略调整对我国的相关启示[J]. 中国国土资源经济, 2019,32(7):38-45. |
[ Zhang S X, Liu B E, Ma P L. The enlightenment of the strategic adjustment of key minerals in the United States to Our country[J]. Natural Resource Economics of China, 2019, (7):38-45.] | |
[5] |
Gulley A L, Nassar N T, Xun S. China, the United States, and competition for resources that enable emerging technologies[J]. Proceedings of the National Academy of Sciences, 2018,115(16):4111-4115.
doi: 10.1073/pnas.1717152115 |
[6] | 郭佳, 易继宁, 王慧. 全球主要战略性矿产名录评价因素对比研究[J]. 现代矿业, 2018,34(12):1-5. |
[ Guo J, Yi J N, Wang H. Comparative study on evaluation factors of global major strategic mineral resources lists[J]. Modern Mining, 2018,34(12):1-5.] | |
[7] | 毛景文, 杨宗喜, 谢桂青, 等. 关键矿产: 国际动向与思考[J]. 矿床地质, 2019,38(4):689-698. |
[ Mao J W, Yang Z X, Xie G Q, et al. Critical minerals: International trend and thinking[J]. Mineral Deposits, 2019,38(4):689-698.] | |
[8] | 王安建, 王高尚, 邓祥征, 等. 新时代中国战略性关键矿产资源安全与管理[J]. 中国科学基金, 2019,33(2):31-38. |
[ Wang A J, Wang G S, Deng X Z, et al. Security and management of China’s critical mineral resources in the new era[J]. Bulletin of National Natural Science Foundation of China, 2019,33(2):31-38.] | |
[9] | 翟明国, 吴福元, 胡瑞忠, 等. 战略性关键金属矿产资源: 现状与问题[J]. 中国科学基金, 2019,33(2):106-111. |
[ Zhai M G, Wu F Y, Hu R Z, et al. Critical metal mineral resources: Current research status and scientific issues[J]. Bulletin of National Natural Science Foundation of China, 2019,33(2):106-111.] | |
[10] |
Nassar N T, Graedel T E, Harper E M. By-product metals are technologically essential but have problematic supply[J]. Science Advances, 2015, DOI: 10.1126/sciadv.1400180.
doi: 10.1126/sciadv.abb1219 pmid: 33028519 |
[11] |
Grandell L, Lehtil A, Kivinen M, et al. Role of critical metals in the future markets of clean energy technologies[J]. Renewable Energy, 2016,95:53-62.
doi: 10.1016/j.renene.2016.03.102 |
[12] | Vidal O, Rostom F, François C, et al. Global trends in metal consumption and supply: The raw material-energy nexus[J]. Elements: An International Magazine of Mineralogy, Geochemistry, and Petrology, 2017,13(5):319-324. |
[13] |
Choi C H, Eun J, Cao J J, et al. Global strategic level supply planning of materials critical to clean energy technologies: A case study on indium[J]. Energy, 2018,147:950-964.
doi: 10.1016/j.energy.2018.01.063 |
[14] | 李鹏飞, 杨丹辉, 渠慎宁, 等. 稀有矿产资源的战略评估: 基于战略性新兴产业发展的视角[J]. 中国工业经济, 2014, (7):44-57. |
[ Li P F, Yang D H, Qu S N, et al. A strategic assessment of rare minerals: Based on the perspective of strategic emerging industries development[J]. China Industrial Economics, 2014, (7):44-57.] | |
[15] |
Han H, Geng Y, Tate J E, et al. Securing platinum-group metals for transport low-carbon transition[J]. One Earth, 2019,1(1):117-125.
doi: 10.1016/j.oneear.2019.08.012 |
[16] |
Pieronni M P, Mcaloone T, Pigosso D A C. Business model innovation for circular economy and sustainability: A review of approaches[J]. Journal of Cleaner Production, 2019,215:198-216.
doi: 10.1016/j.jclepro.2019.01.036 |
[17] |
Hao H, Geng Y, Tate J E, et al. Impact of transport electrification on critical metal sustainability with a focus on the heavy-duty segment[J]. Nature Communications, 2019,10(1):1-7.
doi: 10.1038/s41467-018-07882-8 pmid: 30602773 |
[18] | Hotelling H. The economics of exhaustible resources[J]. Bulletin of Mathematical Biology, 1931,39(1-2):137-175. |
[19] |
Yano J, Muroi T, Sakai S I. Rare earth element recovery potentials from end-of-life hybrid electric vehicle components in 2010-2030[J]. Journal of Material Cycles and Waste Management, 2016,18(4):655-664.
doi: 10.1007/s10163-015-0360-4 |
[20] | Hartwick J M, Dasgupta P S, Heal G M. Economic theory and exhaustible resources[J]. The Canadian Journal of Economics/Revue Canadienne d’Economique, 1981,14(2):355-358. |
[21] |
梁姗姗, 杨丹辉. 矿产资源消费与产业结构演进的研究综述[J]. 资源科学, 2018,40(3):535-546.
doi: 10.18402/resci.2018.03.08 |
[ Liang S S, Yang D H. A review of mineral resource consumption and industrial structure evolution[J]. Resources Science, 2018,40(3):535-546.] | |
[22] | 刘东霖, 张俊瑞. 我国能源消费需求的时变弹性分析[J]. 中国人口·资源与环境, 2010,20(2):92-97. |
[ Liu D L, Zhang J R. Time varying elasticity of energy consumption demand[J]. China Population, Resources and Environment, 2010,20(2):92-97.] | |
[23] |
Weinzettel J, Kovanda J. Structural decomposition analysis of raw material consumption[J]. Journal of Industrial Ecology, 2011,15(6):893-907.
doi: 10.1111/j.1530-9290.2011.00378.x |
[24] |
Song Y, Huang J B, Zhang Y J, et al. Drivers of metal consumption in China: An input- output structural decomposition analysis[J]. Resources Policy, 2019,63:101421.
doi: 10.1016/j.resourpol.2019.101421 |
[25] | 王双英, 李东, 王群伟. 基于LMDI指数分解的中国石油消费影响因素分析[J]. 资源科学, 2011,33(4):759-765. |
[ Wang S Y, Li D, Wang Q W. Analysis of factors affecting China’s oil consumption based on LMDI[J]. Resources Science, 2011,33(4):759-765.] | |
[26] |
Du K, Lin B. Understanding the rapid growth of China’s energy consumption: A comprehensive decomposition framework[J]. Energy, 2015,90:570-577.
doi: 10.1016/j.energy.2015.07.079 |
[27] |
Wang C. Decomposing energy productivity change: A distance function approach[J]. Energy, 2007,32(8):1326-1333.
doi: 10.1016/j.energy.2006.10.001 |
[28] |
Wood R, Lenzen M. Structural path decomposition[J]. Energy Economics, 2009,31(3):335-341.
doi: 10.1016/j.eneco.2008.11.003 |
[29] |
Cheng F F, Yang S L, Zhou K L. Quantile partial adjustment model with application to predicting energy demand in China[J]. Energy, 2019, DOI: 10.1016/j.energy.2019.116519.
doi: 10.1016/j.energy.2012.01.072 pmid: 23761949 |
[30] |
Benjamin N I, Lin B Q. Influencing factors on electricity demand in Chinese nonmetallic mineral products industry: A quantile perspective[J]. Journal of Cleaner Production, 2020, DOI: 10.1016/j.jclepro.2019.118584.
doi: 10.1016/j.jclepro.2020.123647 pmid: 32834572 |
[31] |
Alam M M, Murad M W. The impacts of economic growth, trade openness and technological progress on renewable energy use in organization for economic cooperation and development countries[J]. Renewable Energy, 2020,145:382-390.
doi: 10.1016/j.renene.2019.06.054 |
[32] |
Izatt R M, Izatt S R, Bruening R L, et al. Challenges to achievement of metal sustainability in our high-tech society[J]. Chemical Society Reviews, 2014,43(8):2451-2475.
doi: 10.1039/c3cs60440c |
[33] | 任泽平, 熊柴, 孙婉莹, 等. 中国新基建研究报告[J]. 发展研究, 2020, (4):4-19. |
[ Ren Z P, Xiong C, Sun W Y, et al. Research report of China’s new infrastructure[J]. Development Research, 2020, (4):4-19.] | |
[34] | 韩莹. 技术进步对我国经济增长贡献率的测定及实证分析[J]. 经济问题探索, 2008, (4):11-16. |
[ Han Y. The measurement and its substantial evidence analysis for the growth contribution rate of technique progress to Chinese economy[J]. Inquiry into Economic Issues, 2008, (4):11-16.] | |
[35] | 李晓宁. 经济增长的技术进步效率研究: 1978-2010[J]. 科技进步与对策, 2012,29(7):5-10. |
[ Li X N. Study on technology advancement efficiency of economic growth: 1978-2010[J]. Science & Technology Progress and Policy, 2012,29(7):5-10.] | |
[36] |
Sun X, Hao H, Liu Z W, et al. The dynamic equilibrium mechanism of regional lithium flow for transportation electrification[J]. Environmental Science & Technology, 2018,53(2):743-751.
doi: 10.1021/acs.est.8b04288 pmid: 30576596 |
[37] |
Nassar N T, Wilburn D R, Goonan T G. Byproduct metal requirements for U. S. wind and solar photo voltaic electricity generation up to the year 2040 under various Clean Power Plan scenarios[J]. Applied Energy, 2016,183:1209-1226.
doi: 10.1016/j.apenergy.2016.08.062 |
[38] |
Arowosola A, Gaustad G. Estimating increasing diversity and dissipative loss of critical metals in the aluminum automotive sector[J]. Resources, Conservation and Recycling, 2019,150:104382.
doi: 10.1016/j.resconrec.2019.06.016 |
[39] |
Li X Y, Ge J P, Chen W Q, et al. Scenarios of rare earth elements demand driven by automotive electrification in China: 2018-2030[J]. Resources, Conservation and Recycling, 2019,145:322-331.
doi: 10.1016/j.resconrec.2019.02.003 |
[40] | 李健, 徐海成. 技术进步与我国产业结构调整关系的实证研究[J]. 软科学, 2011,25(4):8-13. |
[ Li J, Xu H C. Research on the relationship between technical progress and adjustment of industry structure in China[J]. Soft Science, 2011,25(4):8-13.] | |
[41] |
Langkau S, Luis A T E, Technological change and metal demand over time: What can we learn from the past?[J]. Sustainable Materials and Technologies, 2018,16:54-59.
doi: 10.1016/j.susmat.2018.02.001 |
[42] | Burns L S, Friedmann J. Natural Resources Endowment and Regional Economic Growth[R]. Springfield: Environment, Development and Public Policy (Cities and Development), 1961. |
[43] | 陈其慎, 于汶加, 张艳飞, 等. 资源-产业雁行式演进规律[J]. 资源科学, 2015,37(5):871-882. |
[ Chen Q S, Yu W J, Zhang Y F, et al. Resources-industry ‘flying geese’ evolving pattern[J]. Resources Science, 2015,37(5):871-882.] | |
[44] | 王昶, 黄健柏. 中国金属资源战略形势变化及其产业政策调整研究[J]. 中国人口·资源与环境, 2014,24(171):391-394. |
[ Wang C, Huang J B. The changes in strategic situation of China’s metal resources and the adjustment of the industrial policy[J]. China Population, Resources and Environment, 2014,24(171):391-394.] | |
[45] |
王昶, 宋慧玲, 耿红军, 等. 关键新材料创新突破的研究回顾与展望[J]. 资源科学, 2019,41(2):207-218.
doi: 10.18402/resci.2019.02.01 |
[ Wang C, Song H L, Geng H J, et al. Review and prospect of advanced material innovative development[J]. Resources Science, 2019,41(2):207-218.] | |
[46] |
Sprecher B, Reemeyer L, Alonso E, et al. How black swan disruptions impact minor metals[J]. Resources Policy, 2017,54:88-96.
doi: 10.1016/j.resourpol.2017.08.008 |
[47] | UNEP. Critical Metals for Future Sustainable Technologies and Their Recycling Potential[R]. Darmstadt: Öko-Institut, United Nations Environment Programme, 2009. |
[48] |
Kim J Y, Shin D O, Chang T, et al. Effect of the dielectric constant of a liquid electrolyte on lithium metal anodes[J]. Electrochimica Acta, 2019,300:299-305.
doi: 10.1016/j.electacta.2019.01.113 |
[49] |
Nevin K P, Woodard T L, Franks A E, et al. Microbial electrosynjournal: Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds[J]. mBio, 2010, DOI: 10.1128/mBio.00103-10.
doi: 10.1128/mBio.02426-20 pmid: 32994333 |
[50] |
Løvik A N, Hagelüken C, Wäger P. Improving supply security of critical metals: Current developments and research in the EU[J]. Sustainable Materials and Technologies, 2018,15:9-18.
doi: 10.1016/j.susmat.2018.01.003 |
[51] |
Nevin K P, Hensley S A, Franks A E, et al. Electrosynjournal of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms[J]. Applied and Environmental Microbiology. 2011,77(9):2882-2886.
doi: 10.1128/AEM.02642-10 |
[52] |
Hartmann P, Bender C L, Vracar M, et al. A rechargeable room-temperature sodium superoxide (NaO2) battery[J]. Nature Materials, 2013,12(3):228-232.
doi: 10.1038/NMAT3486 |
[53] |
Slade M E. Recent advances in econometric estimation of materials substitution[J]. Resources Policy, 1981,7(2):103-109.
doi: 10.1016/0301-4207(81)90033-7 |
[54] | 王安建, 王高尚, 张建华, 等. 矿产资源与国家经济发展[M]. 北京: 地质出版社, 2002. |
[ Wang A J, Wang G S, Zhang J H, et al. Mineral Resources and National Economic Development[M]. Beijing: Geological Publishing House, 2002.] | |
[55] |
任忠宝, 王世虎, 唐宇, 等. 矿产资源需求拐点理论与峰值预测[J]. 自然资源学报, 2012,27(9):1480-1489.
doi: 10.11849/zrzyxb.2012.09.005 |
[ Ren Z B, Wang S H, Tang Y, et al. The inflection point theory of mineral resources demand and peak forecast[J]. Journal of Natural Resources, 2012,27(9):1480-1489.] | |
[56] |
Pauliuk S, Wang T, Muller D B, et al. Moving toward the circular economy: The role of stocks in the Chinese steel cycle[J]. Environmental Science & Technology, 2012,46(1):148-154.
doi: 10.1021/es201904c pmid: 22091699 |
[57] |
Ma W, Zhu X, Wang M. Forecasting iron ore import and consumption of China using grey model optimized by particle swarm optimization algorithm[J]. Resources Policy, 2013,38(4):613-620.
doi: 10.1016/j.resourpol.2013.09.007 |
[58] | 刘艳飞, 张艳, 于汶加, 等. 全球原镁需求预测及中国合理产能分析[J]. 资源科学, 2015,37(5):1047-1058. |
[ Liu Y F, Zhang Y, Yu W J, et al. Analysis and forecast of world primary magnesium demand and reasonable productivity for China[J]. Resources Science, 2015,37(5):1047-1058.] | |
[59] | Xuan Y, Yue Q. Forecast of steel demand and the availability of depreciated steel scrap in China[J]. Resources Conservation & Recycling, 2016,109:1-12. |
[60] |
Schipper B W, Lin H C, Meloni M A, et al. Estimating global copper demand until 2100 with regression and stock dynamics[J]. Resources, Conservation and Recycling, 2018,132:28-36.
doi: 10.1016/j.resconrec.2018.01.004 |
[61] |
王昶, 宋慧玲, 左绿水, 等. 国家金属资源安全研究回顾与展望[J]. 资源科学, 2017,39(5):805-817.
doi: 10.18402/resci.2017.05.01 |
[ Wang C, Song H L, Zuo L S, et al. Review and prospects of national metal resource security[J]. Resources Science, 2017,39(5):805-817.] | |
[62] | 王安建, 王高尚, 陈其慎, 等. 能源与国家经济发展[M]. 北京: 地质出版社, 2008. |
[ Wang A J, Wang G S, Chen Q S, et al. Energy and National Economic Development[M]. Beijing: Geology Press, 2008.] | |
[63] | 王安建, 王高尚, 陈其慎, 等. 矿产资源需求理论与模型预测[J]. 地球学报, 2010,31(2):137-147. |
[ Wang A J, Wang G S, Chen Q S, et al. The mineral resources demand theory and the prediction model[J]. Acta Geoscientica Sinica, 2010,31(2):137-147.] | |
[64] | 王安建, 王高尚, 周凤英. 能源和矿产资源消费增长的极限与周期[J]. 地球学报, 2017,38(1):3-10. |
[ Wang A J, Wang G S, Zhou F Y. The limits and cycles of the growth of energy and mineral resources consumption[J]. Acta Geoscientica Sinica, 2017,38(1):3-10.] | |
[65] | 陈其慎, 于汶加, 张艳飞, 等. 点石: 未来20年全球矿产资源产业发展研究[M]. 北京: 科学出版社, 2016. |
[ Chen Q S, Yu W J, Zhang Y F, et al. Point Stone: Research on the Development of Global Mineral Resources Industry in the Next 20 Years[M]. Beijing: Science Press, 2016.] | |
[66] |
Elshkaki A, Graedel T E. Dynamic analysis of the global metals flows and stocks in electricity generation technologies[J]. Journal of Cleaner Production, 2013,59:260-273.
doi: 10.1016/j.jclepro.2013.07.003 |
[67] |
Bustamante M L, Gaustad G. Challenges in assessment of clean energy supply-chains based on byproduct minerals: A case study of tellurium use in thin film photovoltaics[J]. Applied Energy, 2014,123:397-414.
doi: 10.1016/j.apenergy.2014.01.065 |
[68] |
Cao Z, O’Sullivan C. Tan J, et al. Resourcing the fairytale country with wind power: A dynamic material flow analysis[J]. Environmental Science & Technology, 2019,53(19):11313-11322.
doi: 10.1021/acs.est.9b03765 pmid: 31455077 |
[69] |
Manberger A, Stenqvist B. Global metal flows in the renewable energy transition: Exploring the effects of substitutes, technological mix and development[J]. Energy Policy, 2018,119:226-241.
doi: 10.1016/j.enpol.2018.04.056 |
[70] |
Elshkaki A, Shen L. Energy-material nexus: The impacts of national and international energy scenarios on critical metals use in China up to 2050 and their global implications[J]. Energy, 2019,180:903-917.
doi: 10.1016/j.energy.2019.05.156 |
[71] |
Wiedmann T O, Schandl H, Moran D. The footprint of using metals: New metrics of consumption and productivity[J]. Environmental Economics and Policy Studies, 2015,17(3):369-388.
doi: 10.1007/s10018-014-0085-y |
[72] | Nakicenovic N, Swart R. Emission Scenarios[R]. Cambridge: Cambridge University Press, 2000. |
[73] | UNEP. Global Environmental Outlook 4[R]. Nairobi: Environment for Development, United Nations Environment Programme, 2007. |
[74] | Greenpeace, EREC. Energy Revolution: A Sustainable World Energy Outlook[R]. The Netherlands: Greenpeace International, European Renewable Energy Council, 2008. |
[75] |
Alonso E, Sherman A M, Wallington T J, et al. Evaluating rare earth element availability: A case with revolutionary demand from clean technologies[J]. Environmental Science & Technology, 2012,46:3406-3414.
doi: 10.1021/es203518d pmid: 22304002 |
[76] |
Hoenderdaal S, Tercero E L, Marscheider W F, et al. Can a dysprosium shortage threaten green energy technologies?[J]. Energy, 2013,49:344-355.
doi: 10.1016/j.energy.2012.10.043 |
[77] |
Kim J, Guillaume B, Chung J, et al. Critical and precious materials consumption and requirement in wind energy system in the EU 27[J]. Applied Energy, 2015,139:327-334.
doi: 10.1016/j.apenergy.2014.11.003 |
[78] |
Pavel C C, Lacal A R, Marmier A, et al. Substitution strategies for reducing the use of rare earths in wind turbines[J]. Resource Policy, 2017,52:349-357.
doi: 10.1016/j.resourpol.2017.04.010 |
[79] | Liu D H, Gao X Y, An H Z, et al. Supply and demand response trends of lithium resources driven by the demand of emerging renewable energy technologies in China[J]. Resources Conservation & Recycling, 2019,145:311-321. |
[80] |
Houari Y, Speirs J, Candelise C, et al. A system dynamics model of tellurium availability for CdTe PV[J]. Progress in Photovoltaics: Research and Applications, 2014,22(1):129-146.
doi: 10.1002/pip.v22.1 |
[81] |
Tazi N, Kim J, Bouzidi Y, et al. Waste and material flow analysis in the end-of-life wind energy system[J]. Resources Conservation Recycling, 2019,145:199-207.
doi: 10.1016/j.resconrec.2019.02.039 |
[82] |
Moreau V, Dos R P, Vuille F. Enough metals? Resource constraints to supply a fully renewable energy system[J]. Resources, 2019, DOI: 10.3390/resources8010029.
doi: 10.1080/23802359.2016.1197070 pmid: 28367503 |
[83] |
Fishman T, Graedel T E. Impact of the establishment of US offshore wind power on neodymium flows[J]. Nat. Sustain, 2019,2:332-338.
doi: 10.1038/s41893-019-0252-z |
[84] |
Hertwich E G, Gibon T, Bouman E A, et al. Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015,112:6277-6282.
doi: 10.1073/pnas.1312753111 pmid: 25288741 |
[85] |
Imholte D D, Nguyen R T, Vedantam A, et al. An assessment of U. S. rare earth availability for supporting U. S. wind energy growth targets[J]. Energy Policy, 2018,113:294-305.
doi: 10.1016/j.enpol.2017.11.001 |
[86] |
Gloser S, Soulier M, Tercero E L A. Dynamic analysis of global copper flows. Global stocks, post consumer material flows, recycling indicators, and uncertainty evaluation[J]. Environmental Science & Technology, 2013,47(12):6564-6572.
doi: 10.1021/es400069b pmid: 23725041 |
[87] |
Mancheri N A, Sprecher B, Deetman S, et al. Resilience in the tantalum supply chain. Resources[J]. Resources, Conservation and Recycling, 2018,129:56-69.
doi: 10.1016/j.resconrec.2017.10.018 |
[88] |
Sverdrup H U. Modelling global extraction, supply, price and depletion of the extractable geological resources with the LITHIUM model[J]. Resources, Conservation and Recycling, 2016,114:112-129.
doi: 10.1016/j.resconrec.2016.07.002 |
[89] | 王琳, 齐中英, 潘峰. 社会演进中钢未来使用规律预测及政策分析[J]. 运筹与管理, 2017,26(1):173-181. |
[ Wang L, Qi Z Y, Pan F. Patterns prediction and policy analysis of steel use in societal evolution[J]. Operations Research and Management Science, 2017,26(1):173-181.] | |
[90] | 张超, 王韬, 陈伟强, 等. 中国钢铁长期需求模拟及产能过剩态势评估[J]. 中国人口·资源与环境, 2018,28(10):169-176. |
[ Zhang C, Wang T, Chen W Q, et al. Simulation of China’s long-term steel demand and evaluation of the trend of overcapacity of steel industry[J]. China Population, Resources and Environment, 2018,28(10):169-176.] | |
[91] |
Müller D B, Wang T, Duval B, et al. Exploring the engine of anthropogenic iron cycles[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006,103:16111-16116.
doi: 10.1073/pnas.0603375103 pmid: 17053079 |
[92] |
Stamp A, Wager P A, Hellweg S. Linking energy scenarios with metal demand € modeling: The case of indium in CIGS solar cells[J]. Resources, Conservation and Recycling, 2014,93:156-167.
doi: 10.1016/j.resconrec.2014.10.012 |
[93] |
Brunner P H, Rechberger H. Practical handbook of material flow analysis[J]. The International Journal of Life Cycle Assessment, 2004,9(5):337-338.
doi: 10.1007/BF02979426 |
[94] |
Elshkaki A, Graedel T E, Ciacci L, et al. Resource demand scenarios for the major metals[J]. Environmental Science & Technology, 2018,52:2491-2497.
doi: 10.1021/acs.est.7b05154 pmid: 29380602 |
[95] |
Deetman S, Pauliuk S, Van Vuuren D P, et al. Scenarios for demand growth of metals in electricity generation technologies, cars, and electronic appliances[J]. Environmental Science & Technology: ES&T, 2018,52(8):4950-4959.
doi: 10.1021/acs.est.7b05549 |
[96] |
Habib K, Wenzel H. Exploring rare earths supply constraints for the emerging clean energy technologies and the role of recycling[J]. Journal of Cleaner Production, 2014,84:348-359.
doi: 10.1016/j.jclepro.2014.04.035 |
[97] |
Martin G, Rentsch L, Höck M, et al. Lithium market research: Global supply, future demand and price development[J]. Energy Storage Materials, 2017,6:171-179.
doi: 10.1016/j.ensm.2016.11.004 |
[98] |
Kucukvar M, Onat N C, Haider M A. Material dependence of national energy development plans: The case for Turkey and United Kingdom[J]. Journal of Cleaner Production, 2018,200:490-500.
doi: 10.1016/j.jclepro.2018.07.245 |
[99] |
Watari T, McLellan B C, Ogata S, et al. Analysis of potential for critical metal resource constraints in the international energy agency’s long-term low-carbon energy scenarios[J]. Minerals, 2018, DOI: 10.3390/min8040156.
doi: 10.3390/min8090413 pmid: 31223499 |
[100] |
Watari T, McLellan B C, Ogata S, et al. Analysis of potential for critical metal resource constraints in the international energy agency’s long-term low-carbon energy scenarios[J]. Minerals, 2018, DOI: 10.3390/min8040156.
doi: 10.3390/min8090413 pmid: 31223499 |
[101] |
Candelisea C, Spiersa J F, Gross R J K. Materials availability for thin film (TF) PV technologies development: A real concern?[J]. Renewable and Sustainable Energy Reviews, 2011,15:4972-4981.
doi: 10.1016/j.rser.2011.06.012 |
[102] |
Chen Y H, Chen C Y, Lee S C. Technology forecasting and patent strategy of hydrogen energy and fuel cell technologies[J]. International Journal of Hydrogen Energy, 2011,36(12):6957-6969.
doi: 10.1016/j.ijhydene.2011.03.063 |
[103] |
Lanzi E, Verdolini E. Efficiency-improving fossil fuel technologies for electricity generation: Data selection and trends[J]. Energy Policy, 2011,39(11):7000-7014.
doi: 10.1016/j.enpol.2011.07.052 |
[104] | 王班班, 齐绍洲. 有偏技术进步、要素替代与中国工业能源强度[J]. 经济研究, 2014, (2):117-129. |
[ Wang B B, Qi S Z. Biased technological progress, factor substitution and China’s industrial energy intensity[J]. Economic Research Journal, 2014, (2):117-129.] | |
[105] |
Koh H, Magee C L. A functional approach for studying technological progress: Application to information technology[J]. Technological Forecasting and Social Change, 2006,73(9):1061-1083.
doi: 10.1016/j.techfore.2006.06.001 |
[106] |
Saur M I. How methodological issues affect the energy indicator results for different electricity generation technologies[J]. Energy Policy, 2013,63(6):283-299.
doi: 10.1016/j.enpol.2013.09.005 |
[107] | Zhang Y G, Gu Y, Chen X Y, et al. An effective indicator for evaluation of wavelength extending InGaAs photodetector technologies[J]. Infrared Physics & Technology, 2017,83:45-50. |
[108] |
Acemoglu D. Directed technical change[J]. Review of Economic Studies, 2002,69(4):781-809.
doi: 10.1111/roes.2002.69.issue-4 |
[1] | 赵娜娜, 王志宝, 李鸿梅. 中国能耗模式演变及其对经济发展的影响[J]. 资源科学, 2021, 43(1): 122-133. |
[2] | 黄健柏, 孙芳, 宋益. 清洁能源技术关键金属供应风险评估[J]. 资源科学, 2020, 42(8): 1477-1488. |
[3] | 朱学红, 彭婷, 谌金宇. 战略性关键金属贸易网络特征及其对产业结构升级的影响[J]. 资源科学, 2020, 42(8): 1489-1503. |
[4] | 郝敏, 陈伟强, 马梓洁, 张超, 甘建邦. 2000—2015年中国铜废碎料贸易及效益风险分析[J]. 资源科学, 2020, 42(8): 1515-1526. |
[5] | 徐博, 杨来科, 钱志权. 全球价值链分工地位对于碳排放水平的影响[J]. 资源科学, 2020, 42(3): 527-535. |
[6] | 张兰婷, 韩立民, 杨义武. 渔业技术进步对渔民增收的影响——基于中国省级面板数据的实证研究[J]. 资源科学, 2019, 41(4): 655-668. |
[7] | 王泽宇, 徐静, 王焱熙. 中国海洋资源消耗强度因素分解与时空差异分析[J]. 资源科学, 2019, 41(2): 301-312. |
[8] | 陈嘉, 韦素琼, 陈松林. 开放条件下的闽台农业技术进步研究[J]. 资源科学, 2018, 40(10): 1980-1990. |
[9] | 陈睿, 饶政华, 刘继雄, 谌盈盈, 廖胜明. 基于LEAP模型的长沙市能源需求预测及对策研究[J]. 资源科学, 2017, 39(3): 482-489. |
[10] | 赵建安, 钟帅, 沈镭. 中国主要耗能行业技术进步对节能减排的影响与展望[J]. 资源科学, 2017, 39(12): 2211-2222. |
[11] | 刘卫东, 仲伟周, 石清. 2020年中国能源消费总量预测——基于定基能源消费弹性系数法[J]. 资源科学, 2016, 38(4): 658-664. |
[12] | 尹朝静, 李谷成, 葛静芳. 粮食安全:气候变化与粮食生产率增长——基于HP滤波和序列DEA方法的实证分析[J]. 资源科学, 2016, 38(4): 665-675. |
[13] | 李瑞, 张悟移. 基于RBF神经网络的物流业能源需求预测[J]. 资源科学, 2016, 38(3): 450-460. |
[14] | 魏玮, 周晓博. 1993-2012年中国省际技术进步方向与工业生产节能减排[J]. 资源科学, 2016, 38(2): 300-310. |
[15] | 黄泰, 席建超, 葛全胜. 长江三角洲居民乡村旅游空间机会差异及影响机制[J]. 资源科学, 2016, 38(11): 2168-2180. |
|