资源科学 ›› 2020, Vol. 42 ›› Issue (8): 1515-1526.doi: 10.18402/resci.2020.08.07

• 关键矿产资源贸易 • 上一篇    下一篇

2000—2015年中国铜废碎料贸易及效益风险分析

郝敏1,2,3(), 陈伟强1,2,3(), 马梓洁1,2,3, 张超4, 甘建邦5   

  1. 1.中国科学院城市环境研究所,中国科学院城市环境与健康重点实验室,厦门361021
    2.中国科学院大学,北京 100049
    3.厦门城市代谢重点实验室,厦门 361021
    4.同济大学经济与管理学院,上海 200092
    5.美国德州农工大学生态与保护生物学系,美国德克萨斯州 77843
  • 收稿日期:2020-03-11 修回日期:2020-07-08 出版日期:2020-08-25 发布日期:2020-10-25
  • 通讯作者: 陈伟强
  • 作者简介:郝敏,女,江苏宿迁人,博士生,研究方向为铜的物质代谢。E-mail: mhao@iue.ac.cn
  • 基金资助:
    国家自然科学基金项目(41671523);中国科学院前沿科学重点研究项目(QYZDB-SSW-DQC012);福建省科技引导性项目(2017Y0080)

Benefits and risks of China’s copper waste and scrap trade during 2000-2015

HAO Min1,2,3(), CHEN Weiqiang1,2,3(), MA Zijie1,2,3, ZHANG Chao4, GAN Jianbang5   

  1. 1. Key Lab of Urban Environment and Health, Institute of Urban Environment, CAS, Xiamen 361021, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
    3. Xiamen Key Lab of Urban Metabolism, Xiamen 361021, China
    4. College of Economics and Management, Tongji University, Shanghai 200092, China
    5. Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX 77843, USA
  • Received:2020-03-11 Revised:2020-07-08 Online:2020-08-25 Published:2020-10-25
  • Contact: CHEN Weiqiang

摘要:

铜是具有重要战略意义的关键金属。中国长期以来进口“六类废杂铜”和“七类废杂铜”两种废碎料来冶炼再生铜。本文基于海关贸易和有色金属工业统计数据,利用物质流分析和生命周期评价方法研究了铜废碎料贸易的资源、环境和经济效益以及环境与健康风险。结果显示:①2000—2015年,中国累计进口铜废碎料实物量6680万t,其中含金属铜约2000万t,占同期国内再生铜累计产量的56%;②相比利用铜矿石生产精炼铜,利用进口铜废碎料生产再生铜在非生物性资源消耗、温室效应和人体毒性等方面减少了一系列环境影响,同时累计节约铜矿山投资成本约580亿美元。然而,进口的“七类废杂铜”在带来资源效益的同时也造成严重的区域性环境与健康风险:一是进口低品位铜废碎料中夹杂大量有机物,在拆解和熔炼过程中容易产生二恶英等有毒有害物质;二是部分工业园区和小企业在工艺、技术、空间布局和生产管理等方面的落后引发了局部地区较为严重的环境和健康危害。因此,建议辩证和全面地认识铜废碎料进口带来的效益和风险,在坚决禁止进口“以回收铜为主的废电机、电线、电缆和五金电器”这些“七类废杂铜”的同时,继续利用进口“六类废杂铜”作为重要的铜资源,以降低中国对原生铜矿石的依赖以及造成的采矿和原矿冶炼阶段的环境影响。

关键词: 铜废碎料, 固废贸易, 效益风险分析, 物质流分析, 环境影响评价, 产业生态学, 关键金属

Abstract:

Copper is a critical metal of strategic importance. China has long imported two types of copper scrap, namely “category-6 copper scrap” and “category-7 copper scrap”, as materials for producing recycled copper. Based on the statistics of China Customs and the nonferrous metal industry, this study analyzes the resource availability, environmental and economic benefits, and environmental and health risks of copper scrap trade using material flow analysis and life cycle assessment. The results show that from 2000 to 2015, China imported around 66.8 million tonnes of copper scrap, which contained 20 million tonnes of copper and accounted for 56% of domestic output of recycled copper. Compared with copper production from domestic copper ores, producing recycled copper from imported waste and scrap avoided a range of environmental impacts, such as abiotic depletion potential (ADP), global warming potential (GWP), human toxicity potential (HTP), and so on, and saved USD 58 billion of investments in the mining industry. However, using imported “category-7 copper scrap” for copper refining has also contributed to regional ecological degradation, environmental pollution, and health risks. The smelting process of imported low-grade copper scrap that contains large amounts of organic compounds especially, has led to emissions of dioxins and other toxic substances. In addition, the underdeveloped technology, poor spatial layout, and poor management of many industrial parks and small enterprises have resulted in environmental and health hazards. Therefore, the benefits and risks brought by the imported copper scrap should be evaluated dialectically and comprehensively. While the imports of “category-7 copper scrap” such as “waste electric motors, wires, cables, and hardware and electrical appliances” that are used primarily for copper recycling should be prohibited, the imports of “category-6 copper scrap” should continuously be allowed to reduce China’s dependence on primary copper ores and the environmental impact resulting from the mining and smelting of raw ores.

Key words: copper waste and scrap, solid waste trade, benefit and risk analysis, material flow analysis, environmental impact assessment, industrial ecology, critical metal