资源科学 ›› 2020, Vol. 42 ›› Issue (8): 1477-1488.doi: 10.18402/resci.2020.08.04
收稿日期:
2020-02-17
修回日期:
2020-07-23
出版日期:
2020-08-25
发布日期:
2020-10-25
通讯作者:
宋益
作者简介:
黄健柏,男,湖南临武人,教授,研究方向为资源经济与管理。E-mail: 基金资助:
HUANG Jianbai1(), SUN Fang1, SONG Yi2(
)
Received:
2020-02-17
Revised:
2020-07-23
Online:
2020-08-25
Published:
2020-10-25
Contact:
SONG Yi
摘要:
全球能源结构转型是实现可持续发展的必由之路,而清洁能源技术的发展依赖于多种关键金属材料。本文选取15种清洁能源技术关键金属,从供应减少、需求增加、地缘政治和社会监管4个维度,构建10个评估指标,对清洁能源技术关键金属的供应风险进行定量评估,保障全球清洁能源技术发展和能源结构转型。研究结果表明:①清洁能源技术关键金属的供应风险均处于中风险以上等级,其中铟、镓、锗3种关键金属处于中高风险水平,锂、钴、镉、硒、钼、钯、铂、铜、铝、锌、铁、钛12种关键金属处于中风险等级。②供应减少风险维度中铟、铁、钼、锌、锗、镉6种关键金属属于中高风险,其中铟的风险最高;需求增加风险维度中铟、镓、锗3种关键金属的风险属于中高风险;地缘政治风险维度中有9种关键金属属于中高风险,其中钴的风险最高;社会监管风险维度中有11种关键金属属于中高风险,其中铟的风险最高。因此,需尽快建立关键金属供应安全常态化风险分类管理机制和二次资源回收管理体系,增进与关键金属供应国间的合作,以缓解清洁能源技术发展的关键金属约束。
黄健柏, 孙芳, 宋益. 清洁能源技术关键金属供应风险评估[J]. 资源科学, 2020, 42(8): 1477-1488.
HUANG Jianbai, SUN Fang, SONG Yi. Supply risk assessment of critical metals in clean energy technology[J]. Resources Science, 2020, 42(8): 1477-1488.
表1
供应风险评估指标数据"
指标 | 储量/t | 资源/t | 生产量/t | 回收率 /% | 伴生金属 依赖性/% | 未来技术 需求/% | 可替 代性 | 国家集 中度 | 政治稳 定性 | 政策感知 指数 | 人类发展 指数 |
---|---|---|---|---|---|---|---|---|---|---|---|
锂 | 1.40×107 | 6.20×107 | 8.5×104 | 1 | 52 | 390 | 59 | 0.42 | 1.06 | 69.73 | 0.88 |
钴 | 6.90×106 | 1.45×108 | 1.4×105 | 68 | 85 | 90 | 46 | 0.45 | -1.09 | 41.74 | 0.56 |
铟 | 1.88×104 | 1.25×105 | 7.5×102 | 1 | 100 | 289 | 40 | 0.27 | 0.49 | 48.24 | 0.84 |
镓 | 1.50×106 | (2.75~3.75)×106 | 4.1×102 | 1 | 100 | 581 | 62 | 0.91 | -0.32 | 38.17 | 0.75 |
锗 | 4.50×102 | 2.50×103 | 1.2×102 | 2 | 100 | 213 | 56 | 0.51 | -0.25 | 42.43 | 0.74 |
镉 | 5.00×105 | (4.75~9.5)×106 | 2.6×104 | 15 | 100 | 0 | 62 | 0.18 | 0.28 | 50.61 | 0.82 |
硒 | 9.90×104 | 9.60×105 | 2.8×103 | 5 | 100 | 11 | 53 | 0.22 | 0.59 | 49.24 | 0.84 |
钼 | 1.70×107 | 2.54×107 | 3.0×105 | 30 | 46 | 0 | 30 | 0.27 | 0.20 | 58.19 | 0.80 |
钯 | 3.45×104 | 5.00×104 | 2.1×102 | 14 | 97 | 24 | 61 | 0.29 | -0.08 | 55.23 | 0.77 |
铂 | 3.45×104 | 5.00×104 | 1.6×102 | 14 | 16 | 156 | 34 | 0.47 | 0.03 | 47.22 | 0.72 |
铜 | 8.30×108 | 5.60×109 | 2.1×107 | 53 | 9 | 15 | 30 | 0.16 | 0.11 | 62.41 | 0.76 |
铝 | 3.00×1010 | 5.50×1010 | 3.0×108 | 60 | 0 | 0 | 56 | 0.35 | -0.28 | 47.74 | 0.77 |
锌 | 2.30×108 | 1.90×109 | 1.3×107 | 31 | 10 | 0 | 62 | 0.18 | -0.09 | 53.96 | 0.77 |
铁 | 8.40×1010 | 2.30×1011 | 4.0×109t | 67 | 1 | 0 | 43 | 0.20 | -0.32 | 60.03 | 0.82 |
钛 | 9.40×108 | 2.00×109 | 6.1×106 | 1 | 0 | 21 | 37 | 0.10 | 0.06 | 57.92 | 0.74 |
表2
清洁能源技术关键金属供应风险评估结果"
关键原材料 | 供应减少风险 | 需求增加风险 | 地缘政治风险 | 社会监管风险 | 供应风险 | 风险等级 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
储量静态范围 | 资源静态范围 | 回收率 | 风险 | 伴生金属依赖性 | 未来技术需求 | 可替代性 | 风险 | 国家集中度 | 政治稳定性 | 风险 | 政策感知指数 | 人类发展指数 | 风险 | ||||||
锂 | 0 | 0 | 99 | 33 | 52 | 68 | 41 | 54 | 85 | 29 | 57 | 30 | 88 | 59 | 51 | 中风险 | |||
钴 | 71 | 0 | 32 | 34 | 85 | 27 | 54 | 55 | 86 | 72 | 79 | 58 | 56 | 57 | 56 | 中风险 | |||
铟 | 90 | 28 | 99 | 72 | 100 | 58 | 60 | 73 | 77 | 40 | 59 | 52 | 84 | 68 | 68 | 中高风险 | |||
镓 | 0 | 0 | 99 | 33 | 100 | 83 | 38 | 74 | 98 | 56 | 77 | 62 | 75 | 69 | 63 | 中高风险 | |||
锗 | 99 | 0 | 98 | 66 | 100 | 49 | 44 | 64 | 88 | 55 | 72 | 58 | 74 | 66 | 67 | 中高风险 | |||
镉 | 93 | 15 | 85 | 64 | 100 | 0 | 38 | 46 | 70 | 44 | 57 | 49 | 82 | 66 | 58 | 中风险 | |||
硒 | 83 | 0 | 95 | 59 | 100 | 4 | 47 | 50 | 73 | 38 | 56 | 51 | 84 | 68 | 58 | 中风险 | |||
钼 | 63 | 77 | 70 | 70 | 46 | 0 | 70 | 39 | 77 | 46 | 61 | 42 | 80 | 61 | 58 | 中风险 | |||
钯 | 0 | 0 | 86 | 29 | 97 | 9 | 39 | 48 | 79 | 52 | 65 | 45 | 77 | 61 | 51 | 中风险 | |||
铂 | 0 | 0 | 100 | 33 | 16 | 40 | 66 | 41 | 87 | 49 | 68 | 53 | 72 | 62 | 51 | 中风险 | |||
铜 | 80 | 0 | 47 | 42 | 9 | 6 | 70 | 28 | 68 | 48 | 58 | 38 | 76 | 57 | 46 | 中风险 | |||
铝 | 0 | 14 | 40 | 18 | 0 | 0 | 44 | 15 | 82 | 56 | 69 | 52 | 77 | 65 | 42 | 中风险 | |||
锌 | 94 | 43 | 69 | 69 | 10 | 0 | 38 | 16 | 70 | 52 | 61 | 46 | 77 | 61 | 52 | 中风险 | |||
铁 | 92 | 88 | 33 | 71 | 1 | 0 | 57 | 19 | 72 | 56 | 64 | 40 | 82 | 61 | 54 | 中风险 | |||
钛 | 0 | 0 | 99 | 33 | 0 | 8 | 63 | 24 | 60 | 49 | 55 | 42 | 74 | 58 | 42 | 中风险 |
[1] |
Prăvălie R, Bandoc G. Nuclear energy: Between global electricity demand, worldwide decarbonisation imperativeness, and planetary environmental implications[J]. Journal of Environmental Management, 2019,209:81-92.
doi: 10.1016/j.jenvman.2017.12.043 pmid: 29287177 |
[2] |
Suman S. Hybrid nuclear-renewable energy systems: A review[J]. Journal of Cleaner Production, 2018,181:166-177.
doi: 10.1016/j.jclepro.2018.01.262 |
[3] | IEA. World Energy Outlook 2019[R]. Paris: World Energy Outlook, 2019. |
[4] |
Cheng C T, Lo S L, Lin T T. Applying real options analysis to assess cleaner energy development strategies[J]. Energy Policy, 2011,39(10):5929-5938.
doi: 10.1016/j.enpol.2011.06.048 |
[5] |
Kwon P S, Østergaard P A. Comparison of future energy scenarios for Denmark: IDA 2050, CEESA (coherent energy and environmental system analysis), and climate commission 2050[J]. Energy, 2012,46(1):275-282.
doi: 10.1016/j.energy.2012.08.022 |
[6] |
Knopf B, Nahmmacher P, Schmid E. The European renewable energy target for 2030: An impact assessment of the electricity sector[J]. Energy Policy, 2015,85:50-60.
doi: 10.1016/j.enpol.2015.05.010 |
[7] |
Grandell L, Lehtilä A, Kivinen M, et al. Role of critical metals in the future markets of clean energy technologies[J]. Renewable Energy, 2016,95:53-62.
doi: 10.1016/j.renene.2016.03.102 |
[8] |
Pieroni M P P, McAloone T C, Pigosso D C A. Business model innovation for circular economy and sustainability: A review of approaches[J]. Journal of Cleaner Production, 2019,215:198-216.
doi: 10.1016/j.jclepro.2019.01.036 |
[9] |
Elshkaki A, Shen L. Energy-material nexus: The impacts of national and international energy scenarios on critical metals use in China up to 2050 and their global implications[J]. Energy, 2019,180:903-917.
doi: 10.1016/j.energy.2019.05.156 |
[10] | 陈其慎, 张艳飞, 倪善芹, 等. 日本矿产资源经略强国战略分析[J]. 中国矿业, 2017,26(12):8-15. |
[ Chen Q S, Zhang Y F, Ni S Q, et al. Discussion on the mineral resources strategic power in Japan[J]. China Mining Magazine, 2017,26(12):8-15.] | |
[11] | 王安建, 王高尚, 邓祥征, 等. 新时代中国战略性关键矿产资源安全与管理[J]. 中国科学基金, 2019,33(2):133-140. |
[ Wang A J, Wang G S, Deng X Z, et al. Security and management of China’s critical mineral resources in the new era[J]. Bulletin of National Natural Science Foundation of China, 2019,33(2):133-140.] | |
[12] | Brussels E C. Critical Raw Materials for the EU: Report of the Ad-hoc Working Group on Defining Critical Raw Materials[R]. Berlin: Critical Raw Materials for the EU, 2010. |
[13] | Entr D. Report on Critical Raw Materials for the EU[R]. Luxembourg: Publications Office of the European Union, 2015. |
[14] | Blengini G A, Blagoeva D, Dewulf J, et al. Assessment of the Methodology for Establishing the EU List of Critical Raw Materials-Background report[R]. Luxemburg: JRC Technical Reports, 2017. |
[15] |
龙如银, 杨家慧. 国家矿产资源安全研究现状及展望[J]. 资源科学, 2018,40(3):465-476.
doi: 10.18402/resci.2018.03.01 |
[ Long R Y, Yang J H. Research status and prospect of national mineral resource security[J]. Resources Science, 2018,40(3):465-476.] | |
[16] |
王昶, 宋慧玲, 左绿水, 等. 国家金属资源安全研究回顾与展望[J]. 资源科学, 2017,39(5):805-817.
doi: 10.18402/resci.2017.05.01 |
[ Wang C, Song H L, Zuo L S, et al. Review and prospects of national metal resource security[J]. Resources Science, 2017,39(5):805-817.] | |
[17] |
马玉芳, 沙景华, 闫晶晶, 等. 中国镍资源供应安全评价与对策研究[J]. 资源科学, 2019,41(7):1317-1328.
doi: 10.18402/resci.2019.07.12 |
[ Ma Y F, Sha J H, Yan J J, et al. Safety assessment and countermeasures of nickel resource supply in China[J]. Resources Science, 2019,41(7):1317-1328.] | |
[18] |
刘全文, 沙景华, 闫晶晶, 等. 中国铬资源供应风险评价与对策研究[J]. 资源科学, 2018,40(3):516-525.
doi: 10.18402/resci.2018.03.06 |
[ Liu Q W, Sha J H, Yan J J, et al. Risk assessment and countermeasures of chromium resource supply in China[J]. Resources Science, 2018,40(3):516-525.] | |
[19] |
范松梅, 沙景华, 闫晶晶, 等. 中国铁矿石资源供应风险评价与治理研究[J]. 资源科学, 2018,40(3):507-515.
doi: 10.18402/resci.2018.03.05 |
[ Fan S M, Sha J H, Yan J J, et al. Risk assessment and management of iron ore resource supply in China[J]. Resources Science, 2018,40(3):507-515.] | |
[20] |
Moss R L, Tzimas E, Kara H, et al. The potential risks from metals bottlenecks to the deployment of strategic energy technologies[J]. Energy Policy, 2013,55:556-564.
doi: 10.1016/j.enpol.2012.12.053 |
[21] |
Blengini G A, Nuss P, Dewulf J, et al. EU methodology for critical raw materials assessment: Policy needs and proposed solutions for incremental improvements[J]. Resources Policy, 2017,53:12-19.
doi: 10.1016/j.resourpol.2017.05.008 |
[22] |
Daw G. Security of mineral resources: A new framework for quantitative assessment of criticality[J]. Resources Policy, 2017,53:173-189.
doi: 10.1016/j.resourpol.2017.06.013 |
[23] | 王昶, 宋慧玲, 左绿水, 等. 中国优势金属供应全球需求的风险评估[J]. 自然资源学报, 2018,33(7):1218-1229. |
[ Wang C, Song H L, Zuo L S, et al. Risk assessment of China’s preponderant metals’ supplying to global demand[J]. Journal of Natural Resources, 2018,33(7):1218-1229.] | |
[24] | 张艳飞, 陈其慎, 于汶加, 等. 中国矿产资源重要性二维评价体系构建[J]. 资源科学, 2015,37(5):883-890. |
[ Zhang Y F, Chen Q S, Yu W J, et al. Building a two dimensional coordinate evaluation system of mineral resource importance[J]. Resources Science, 2015,37(5):883-890.] | |
[25] |
Daw G. Security of mineral resources: A new framework for quantitative assessment of criticality[J]. Resources Policy, 2017,53:173-189.
doi: 10.1016/j.resourpol.2017.06.013 |
[26] |
Graedel T E, Barr R, Chandler C, et al. Methodology of metal criticality determination[J]. Environmental Science & Technology: ES&T, 2012,46(2):1063-1070.
doi: 10.1021/es203534z |
[27] |
Graedel T E, Harper E M, Nassar N T, et al. Criticality of metals and metalloids[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(14):4257-4262.
doi: 10.1073/pnas.1500415112 pmid: 25831527 |
[28] | 李鹏飞, 杨丹辉, 渠慎宁, 等. 稀有矿产资源的战略性评估: 基于战略性新兴产业发展的视角[J]. 中国工业经济, 2014, (7):44-57. |
[ Li P F, Yang D H, Qu S N, et al. A strategic assessment of rare minerals: Based on the perspective of strategic emerging industries development[J]. China Industrial Economics, 2014, (7):44-57.] | |
[29] | 王昶, 秦雅, 邵留国, 等. 基于系统动力学的清洁能源技术关键伴生金属可供性研究: 以镓为例[J]. 系统工程, 2018,36(5):116-127. |
[ Wang C, Qin Y, Shao L G, et al. Key associated materials availability in clean energy technologies based on system dynamic: The case study of Gallium[J]. Systems Engineering, 2018,36(5):116-127.] | |
[30] | 王昶, 孙晶, 左绿水, 等. 新能源汽车关键原材料全球供应风险评估[J]. 中国科技论坛, 2018, (4):83-93. |
[ Wang C, Sun J, Zuo L S, et al. Evaluation of global supply risk of critical minerals for new energy vehicles[J]. Forum on Science and Technology in China, 2018, (4):83-93.] | |
[31] |
王昶, 宋慧玲, 耿红军, 等. 关键新材料创新突破的研究回顾与展望[J]. 资源科学, 2019,41(2):207-218.
doi: 10.18402/resci.2019.02.01 |
[ Wang C, Song H L, Geng H J, et al. Review and prospects of advanced material innovative development[J]. Resources Science, 2019,41(2):207-218.] | |
[32] |
Goe M, Gaustad G. Identifying critical materials for photovoltaics in the US: A multi-metric approach[J]. Applied Energy, 2014,123:387-396.
doi: 10.1016/j.apenergy.2014.01.025 |
[33] |
Helbig C, Bradshaw A M, Wietschel L, et al. Supply risks associated with lithium-ion battery materials[J]. Journal of Cleaner Production, 2018,172:274-286.
doi: 10.1016/j.jclepro.2017.10.122 |
[34] |
Helbig C, Bradshaw A M, Kolotzek C, et al. Supply risks associated with CdTe and CIGS thin-film photovoltaics[J]. Applied Energy, 2016,178:422-433.
doi: 10.1016/j.apenergy.2016.06.102 |
[35] |
Grandell L, Hook M. Assessing rare metal availability challenges for solar energy technologies[J]. Sustainability, 2015,7(9):11818-11837.
doi: 10.3390/su70911818 |
[36] | Valero A, Valero A, Calvo G, et al. Material bottlenecks in the future development of green technologies[J]. Renewable & Sustainable Energy Reviews, 2018,93:178-200. |
[37] |
Helbig C, Bradshaw A M, Wietschel L, et al. Supply risks associated with lithium-ion battery materials[J]. Journal of Cleaner Production, 2018,172:274-286.
doi: 10.1016/j.jclepro.2017.10.122 |
[38] | U. S. Geological Survey. Mineral Commodity Summaries[EB/OL]. (2020-08-25) [2020-08-26]. https://www.usgs.gov/centers/nmic/mineral-commodity-summaries. |
[39] | Graedel T E, Allwood J, Birat J P, et al. Recycling Rates of Metals: A Status Report[R]. Nairobi: A Report of the Working Group on the Global Metal Flows to the International Resource Panel, 2011. |
[40] |
Graedel T E, Harper E M, Nassar N T, et al. On the materials basis of modern society[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(20):6295-6300.
doi: 10.1073/pnas.1312752110 pmid: 24297915 |
[41] |
Nassar N T, Graedel T E, Harper E M. By-product metals are technologically essential but have problematic supply[J]. Science Advances, 2015,1(3):e1400180.
doi: 10.1126/sciadv.1400180 pmid: 26601159 |
[42] | Angerer G, Marscheider W F, Lüllmann A, et al. Raw Materials for Emerging Technologies[R]. Frauenhofer ISI, 2009. |
[43] | U. S. Department of Justice and Federal Trade Commission. Horizontal Merger Guidelines[EB/OL]. (2010-08-19) [2017-08-30]. https://www.ftc.gov/sites/default/files/attachments/mergers/100819hmg.pdf. |
[44] | World Bank. The Worldwide Governance Indicators[R]. Washington: The World Bank, 2018. |
[45] | Jackson T, Green K P. Fraser Institute Annual Survey of Mining Companies, 2018[EB/OL]. (2020-08-25) [2020-08-26]. https://www.fraserinstitute.org/sites/default/files/annual-survey-of-mining-companies-2018.pdf. |
[46] | United Nations Development Programme. Human Development Report 2019[R]. New York: The United Nations Development Programme, 2019. |
[47] | 郑人瑞, 唐金荣, 周平, 等. 我国锂资源供应风险评估[J]. 中国矿业, 2016,25(12):30-37. |
[ Zheng R R, Tang J R, Zhou P, et al. Risk assessment of lithium resources supply in China[J]. China Mining Magazine, 2016,25(12):30-37.] |
[1] | 葛建平, 刘佳琦. 关键矿产战略国际比较——历史演进与工具选择[J]. 资源科学, 2020, 42(8): 1464-1476. |
[2] | 朱学红, 彭婷, 谌金宇. 战略性关键金属贸易网络特征及其对产业结构升级的影响[J]. 资源科学, 2020, 42(8): 1489-1503. |
[3] | 郝敏, 陈伟强, 马梓洁, 张超, 甘建邦. 2000—2015年中国铜废碎料贸易及效益风险分析[J]. 资源科学, 2020, 42(8): 1515-1526. |
[4] | 董雪松, 黄健柏, 钟美瑞, 谌金宇, 刘刚, 宋益. 技术进步对关键金属矿产需求影响的研究综述[J]. 资源科学, 2020, 42(8): 1592-1603. |
[5] | 陈晓鹏, 成升魁, 吴良. 中亚主要能源出口国地缘政治风险的度量与评价[J]. 资源科学, 2018, 40(4): 773-783. |
[6] | 范松梅, 沙景华, 闫晶晶, 刘全文, 周平. 中国铁矿石资源供应风险评价与治理研究[J]. 资源科学, 2018, 40(3): 507-515. |
[7] | 刘全文, 沙景华, 闫晶晶, 张国丰, 范松梅, 何更宇. 中国铬资源供应风险评价与对策研究[J]. 资源科学, 2018, 40(3): 516-525. |
[8] | 张艳飞, 陈其慎, 于汶加, 彭浩. 中国矿产资源重要性二维评价体系构建[J]. 资源科学, 2015, 37(5): 883-890. |
[9] | 邸苏闯, 龙鑫, 甄霖. 泾河流域农业旱灾风险综合评估研究[J]. , 2012, 34(11): 2197-2205. |
[10] | 葛全胜, 刘浩龙, 席建超. 区域旅游资源的灾害风险评估——以内蒙古克什克腾旗为例[J]. , 2007, 29(1): 118-125. |
[11] | 郎一环, 王礼茂, 张明华. 中国短缺资源跨国开发的风险管理[J]. , 2003, 25(5): 22-27. |
|