资源科学 ›› 2020, Vol. 42 ›› Issue (5): 920-932.doi: 10.18402/resci.2020.05.10
孙婉馨1,2,3, 张黎1,2,4(), 任小丽1,2, 何洪林1,2,4, 吕妍1,2,3, 牛忠恩1,2,3, 常清青1,2,3
收稿日期:
2019-10-07
修回日期:
2020-03-07
出版日期:
2020-05-25
发布日期:
2020-07-25
通讯作者:
张黎
作者简介:
孙婉馨,女,河北保定人,硕士生,研究方向为生态系统生态学。E-mail: sunwanxin95@126.com
基金资助:
SUN Wanxin1,2,3, ZHANG Li1,2,4(), REN Xiaoli1,2, HE Honglin1,2,4, Lü Yan1,2,3, NIU Zhongen1,2,3, CHANG Qingqing1,2,3
Received:
2019-10-07
Revised:
2020-03-07
Online:
2020-05-25
Published:
2020-07-25
Contact:
Li ZHANG
摘要:
潜在蒸散(PET)是计算实际蒸散、评价区域干湿状况和合理规划水资源的关键因子。本文基于1998—2017年中国生态系统研究网络(CERN)11个森林生态系统定位研究站的逐日气象数据,分别采用Penman-Monteith和Priestley-Taylor两种方法计算各森林生态系统的潜在蒸散(PET_PM和PET_PT),分析近20年潜在蒸散年总量的变化趋势及成因,并量化了基于邻近国家气象站观测数据计算的PET_CMA偏差。两种方法均表明,近20年来7个森林生态系统的潜在蒸散呈下降趋势。风速是长白山温带针阔混交林和鹤山亚热带人工常绿阔叶林潜在蒸散变化的主导因子,而净辐射主导了其他9个森林的潜在蒸散变化。PET_CMA年总量较PET_PM偏高,主要是由于国家气象站下垫面的气温、风速和净辐射均高于森林定位研究站,而相对湿度偏低。北部和东部森林邻近气象站的风速和净辐射变化趋势偏高,导致PET_CMA变化趋势偏高,而其他森林邻近气象站PET_CMA变化趋势偏低主要源自相对湿度变化趋势偏高和净辐射变化趋势偏低。研究可为认识中国森林生态系统潜在蒸散的变化特征及其对气候变化的响应提供参考。
孙婉馨, 张黎, 任小丽, 何洪林, 吕妍, 牛忠恩, 常清青. 1998—2017年中国典型森林生态系统潜在蒸散的变化趋势及成因[J]. 资源科学, 2020, 42(5): 920-932.
SUN Wanxin, ZHANG Li, REN Xiaoli, HE Honglin, Lü Yan, NIU Zhongen, CHANG Qingqing. Trends and influencing factors of potential evapotranspiration in typical forest ecosystems of China during 1998-2017[J]. Resources Science, 2020, 42(5): 920-932.
表1
研究站点信息表"
森林生态系统名称 | 海拔/m | 年均温/oC | 年降水/mm | 优势种 | 土壤类型 | 参考文献 |
---|---|---|---|---|---|---|
长白山温带针阔混交林(CBF) | 801.00 | 3.62 | 727.93 | 蒙古栎、色木槭、红松、水曲柳 | 暗棕壤 | 文献[ |
北京暖温带落叶阔叶混交林(BJF) | 1263.00 | 4.80 | 530.38 | 油松、华北落叶松、辽东栎 | 棕壤 | 文献[ |
茂县暖温带针阔混交林(MXF) | 1826.00 | 9.30 | 825.20 | 云杉、红桦 | 棕壤 | 文献[ |
神农架亚热带常绿落叶阔叶混交林(SNF) | 1750.00 | 10.64 | 1456.71 | 米心水青冈、锐齿槲栎、红桦 | 黄棕壤 | 文献[ |
贡嘎山亚高山暗针叶林(GGF) | 3160.00 | 4.80 | 1860.50 | 峨眉冷杉、糙皮桦 | 暗棕壤 | 文献[ |
千烟洲亚热带人工常绿针叶林(QYF) | 100.00 | 17.90 | 1489.00 | 湿地松、杉木、马尾松 | 红壤 | 文献[ |
会同亚热带次生常绿阔叶林(HTF) | 700.00 | 16.47 | 1234.01 | 红栲、青冈、刨花楠 | 红壤、红黄壤 | 文献[ |
哀牢山亚热带湿性常绿阔叶林(ALF) | 2488.00 | 11.68 | 1728.54 | 木果石栎、多花含笑 | 黄棕壤 | 文献[ |
鼎湖山亚热带季风常绿阔叶林(DHF) | 290.00 | 22.25 | 1844.36 | 木荷、厚壳桂 | 赤红壤 | 文献[ |
鹤山亚热带人工常绿阔叶林(HSF) | 80.00 | 21.98 | 1663.71 | 马占相思 | 赤红壤 | 文献[ |
西双版纳热带季雨林(BNF) | 750.00 | 22.65 | 1396.70 | 番龙眼、千果榄仁 | 砖红壤 | 文献[ |
表2
CERN森林站点不同季节潜在蒸散的变化趋势"
春季 | 夏季 | 秋季 | 冬季 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PET_PM | PET_PT | PET_PM | PET_PT | PET_PM | PET_PT | PET_PM | PET_PT | ||||
CBF | -1.21 | -0.60 | -0.65 | -0.76 | 0.06 | 0.90 | -0.67** | -0.25** | |||
BJF | -1.65 | -2.70* | -5.74** | -7.51** | -3.71** | -4.28** | -0.79** | -0.61** | |||
MXF | 0.44 | 1.76 | 1.71 | 3.84 | -0.47 | 0.42 | 0.62 | 0.84 | |||
SNF | 0.03 | 0.46 | 2.15 | 3.25 | -0.31 | -0.05 | 1.49 | 2.09 | |||
GGF | 0.03 | 0.06 | -1.89* | -2.24* | -0.77 | -1.03 | -0.30 | -0.45 | |||
QYF | 0.01 | -1.36 | -1.92 | -2.69 | -2.28* | -3.60** | -0.04 | -0.90 | |||
HTF | -0.76 | -0.72 | 2.43 | 2.81 | -0.16 | -0.04 | 0.61 | 0.44 | |||
ALF | 2.10 | 4.26* | 0.29 | 0.88 | 1.97 | 3.09* | 0.40 | 2.48* | |||
DHF | -0.54 | -0.74 | 0.17 | -0.21 | -0.65 | -0.73 | 0.29 | 0.18 | |||
HSF | -2.35** | -2.33* | -1.63 | -0.85 | -1.06 | 0.42 | -0.36 | 0.62 | |||
BNF | -2.87* | -3.57* | -3.21* | -4.10* | -2.27 | -2.91 | -1.34 | -1.70 |
表3
CERN森林站点潜在蒸散对气象要素的敏感性"
大气压 | 平均气温 | 相对湿度 | 风速 | 净辐射 | |
---|---|---|---|---|---|
CBF | -0.27 | 0.11 | -0.04 | 0.10 | 0.60 |
BJF | -0.23 | 0.15 | -0.03 | 0.15 | 0.62 |
MXF | -0.25 | 0.28 | -0.82 | 0.07 | 0.72 |
SNF | -0.34 | 0.25 | -0.37 | 0.02 | 0.85 |
GGF | -0.41 | 0.13 | -0.02 | -0.01 | 0.91 |
QYF | -0.25 | 0.36 | -0.04 | 0.04 | 0.83 |
HTF | -0.18 | 0.38 | -0.06 | 0.10 | 0.71 |
ALF | -0.24 | 0.33 | -1.11 | 0.04 | 0.75 |
DHF | -0.14 | 0.43 | -0.72 | 0.11 | 0.76 |
HSF | -0.14 | 0.44 | -0.07 | 0.11 | 0.76 |
BNF | -0.26 | 0.34 | -0.02 | 0.01 | 0.96 |
平均 | -0.24 | 0.29 | -0.30 | 0.07 | 0.77 |
表4
气象要素的变化趋势"
大气压/(kPa/a) | 平均气温/(oC/a) | 相对湿度/(%/a) | 风速/(m/s/a) | 净辐射/(MJ/m2/a) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CERN | CMA | CERN | CMA | CERN | CMA | CERN | CMA | CERN | CMA | |||||
CBF | -0.03** | 0.01** | 0.01 | 0.03 | -0.07 | 0.00 | -0.05** | 0.00 | -0.01 | -0.02* | ||||
BJF | 0.00 | 0.00 | 0.02 | 0.03 | -0.13 | -0.12 | -0.02** | -0.04** | -0.14** | 0.00 | ||||
MXF | 0.00 | 0.00 | 0.01 | 0.06 | 0.33* | 0.50 | -0.01 | -0.06* | 0.06 | 0.04 | ||||
SNF | 0.01* | -0.04 | 0.06 | 0.01 | 0.38* | 0.43 | 0.01 | 0.03 | 0.05 | 0.04 | ||||
GGF | 0.00 | 0.00 | 0.04* | 0.00 | 0.12 | 0.23 | 0.00 | -0.01* | -0.04* | 0.00 | ||||
QYF | -0.01* | -0.01* | 0.02 | 0.02 | -0.37* | 0.17 | 0.00 | 0.01 | -0.07* | 0.00 | ||||
HTF | 0.00 | 0.00 | 0.01 | 0.02 | -0.12 | -0.07 | -0.01 | -0.01 | 0.02 | -0.01 | ||||
ALF | 0.00 | 0.01 | 0.03 | 0.05* | 0.24 | 0.49 | 0.01 | 0.01* | 0.09* | 0.04 | ||||
DHF | 0.01* | -0.02** | 0.02 | -0.06** | -0.07 | 0.43* | -0.01* | 0.03 | -0.01 | 0.01 | ||||
HSF | -0.01* | -0.02** | 0.02 | -0.03 | 0.12 | 0.13 | -0.08** | 0.00 | -0.02 | 0.03** | ||||
BNF | 0.00 | 0.00 | 0.04* | 0.00 | -0.05 | 0.02 | -0.01** | 0.04** | -0.09* | -0.01 |
表5
不同气象要素对PET_ASCE变化趋势的贡献"
大气压 | 平均气温 | 相对湿度 | 风速 | 净辐射 | |
---|---|---|---|---|---|
CBF | 0.03 | 0.22 | 0.48 | -5.32 | -0.71 |
BJF | 0.00 | 0.40 | 0.74 | -3.65 | -9.41 |
MXF | -0.01 | 0.15 | -3.65 | -0.61 | 4.30 |
SNF | -0.02 | 0.80 | -1.59 | 0.39 | 4.27 |
GGF | 0.00 | 0.55 | -0.29 | -0.02 | -3.14 |
QYF | 0.02 | 0.25 | 2.78 | 0.25 | -6.31 |
HTF | 0.00 | 0.18 | 1.32 | -0.79 | 1.37 |
ALF | 0.00 | 0.67 | -3.74 | 0.44 | 6.56 |
DHF | 0.00 | 0.46 | 1.08 | -1.23 | -1.34 |
HSF | 0.00 | 0.42 | -2.00 | -9.38 | -1.72 |
BNF | 0.00 | 0.60 | 0.17 | -1.05 | -9.92 |
表6
CERN森林台站辐射系数的拟合值及其对短波辐射计算结果的影响"
年均值/(MJ/m2) | 变化趋势/(MJ/m2/a) | 拟合的辐射系数 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
观测值 | 原始值 | 反推值 | 观测值 | 原始值 | 反推值 | as | bs | R2 | |||
CBF | 13.42 | 12.46 | 13.62 | -0.04 | -0.02 | -0.02 | 0.28 | 0.53 | 0.60 | ||
BJF | 10.15 | 11.60 | 8.96 | -0.16 | -0.02 | -0.02 | 0.15 | 0.52 | 0.49 | ||
MXF | 12.04 | 12.70 | 11.92 | -0.02 | 0.01 | 0.01 | 0.18 | 0.64 | 0.86 | ||
SNF | 12.61 | 12.76 | 12.51 | 0.01 | -0.02 | -0.02 | 0.20 | 0.63 | 0.61 | ||
GGF | 9.06 | 10.95 | 8.50 | 0.08 | 0.07 | 0.10 | 0.13 | 0.72 | 0.69 | ||
QYF | 12.10 | 13.94 | 11.44 | -0.03 | -0.04 | -0.04 | 0.14 | 0.59 | 0.76 | ||
HTF | 10.79 | 11.51 | 10.51 | -0.03 | 0.03 | 0.03 | 0.20 | 0.59 | 0.63 | ||
ALF | 14.29 | 13.95 | 14.21 | 0.04 | 0.10 | 0.12 | 0.23 | 0.58 | 0.83 | ||
DHF | 13.15 | 12.78 | 12.92 | -0.02 | 0.04 | 0.05 | 0.23 | 0.59 | 0.66 | ||
HSF | 12.54 | 11.32 | 12.32 | -0.03 | 0.08 | 0.08 | 0.28 | 0.50 | 0.47 | ||
BNF | 15.41 | 15.26 | 15.46 | -0.01 | 0.01 | 0.01 | 0.26 | 0.49 | 0.68 |
[1] | 左大康. 现代地理学辞典[M]. 北京: 商务印书馆, 1990. |
[ Zuo D K. Modern Geography Dictionary[M]. Beijing: The Commercial Press, 1990.] | |
[2] |
Ohuura A, Wild M. Is the hydrological cycle accelerating?[J]. Science, 2002,298:1345-1346.
doi: 10.1126/science.1078972 pmid: 12434040 |
[3] | Doorenbos J, Pruitt W O. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements: FAO Irrigation and Drainage Paper 24[M]. Rome: FAO (Food and Agriculture Organization), 1977. |
[4] | 姜江, 姜大膀, 林一骅. 中国干湿区变化与预估[J]. 大气科学, 2017,41(1):43-56. |
[ Jiang J, Jiang D B, Lin Y H. Changes and projection of dry/wet areas over China[J]. Chinese Journal of Atmospheric Sciences, 2017,41(1):43-56.] | |
[5] | 全国水资源初步成果汇总技术小组. 中国水资源初步评价[M]. 北京: 水利部水资源研究及区划办公室, 1981. |
[ National Water Resources Preliminary Results Summary Technical Team. Preliminary Evaluation of Water Resources in China[M]. Beijing: Water Resources Research and Regional Office of the Ministry of Water Resources, 1981.] | |
[6] | Wang Z Z, Ye A L, Wang L H, et al. Spatial and temporal characteristics of reference evapotranspiration and its climatic driving factors over China from 1979-2015[J]. Agricultural Water Management, 2019,213:1096-1108. |
[7] | Peterson T C, Golubev V S, Groisman P Y. Evaporation losing its strength[J]. Nature, 1995,377(6551):687-688. |
[8] |
Roderick M L, Farquhar G D. The cause of decreased pan evaporation over the past 50 years[J]. Science, 2002,298:1410-1411.
doi: 10.1126/science.1075390 pmid: 12434057 |
[9] | Fan Z X, Thomas A. Decadal changes of reference crop evapotranspiration attribution: Spatial and temporal variability over China 1960-2011[J]. Journal of Hydrology, 2018,560:461-470. |
[10] | Fan Z X, Thomas A. Spatiotemporal variability of reference evapotranspiration and its contributing climatic factors in Yunnan Province, SW China, 1961-2004[J]. Climatic Change, 2013,116:309-325. |
[11] | Wang Z Z, Ye A L, Wang L H, et al. Spatial and temporal characteristics of reference evapotranspiration and its climatic driving factors over China from 1979-2015[J]. Agricultural Water Management, 2019,213:1096-1108. |
[12] | Zheng C L, Wang Q. Spatiotemporal pattern of the global sensitivity of the reference evapotranspiration to climatic variables in recent five decades over China[J]. Stochastic Environmental Research and Risk Assessment, 2015,29(8):1937-1947. |
[13] | Wang Z L, Xie P W, Lai C G, et al. Spatiotemporal variability of reference evapotranspiration and contributing climatic factors in China during 1961-2013[J]. Journal of Hydrology, 2017,544:97-108. |
[14] | Liu C M, Zhang D, Liu X M, et al. Spatial and temporal change in the potential evapotranspiration sensitivity to meteorological factors in China (1960-2007)[J]. Journal of Geographical Sciences, 2012,22(1):3-14. |
[15] | Jiang S Z, Liang C, Cui N B, et al. Impacts of climatic variables on reference evapotranspiration during growing season in Southwest China[J]. Agricultural Water Management, 2019,216:365-378. |
[16] | Liu Q, Yan C R, Ju H, et al. Impact of climate change on potential evapotranspiration under a historical and future climate scenario in the Huang-Huai-Hai Plain, China[J]. Theoretical & Applied Climatology, 2018,132(1-2):387-401. |
[17] |
Brauman K A, Freyberg D L, Daily G C. Potential evapotranspiration from forest and pasture in the tropics: A case study in Kona, Hawaii[J]. Journal of Hydrology, 2012, 440-441:52-61.
doi: 10.1016/j.jhydrol.2012.03.014 |
[18] | Zhang J J, Guo B N, Jiang Q O, et al. Study on microclimate characteristics and vertical variation of potential evapotranspiration of the Robinia pseudoacacia forest in the Loess Plateau of China[J]. Advances in Meteorology, 2013,19:1-11. |
[19] | 孙慧珍, 朱晓明. 原始红松林与天然次生林潜在蒸发散对比[J]. 东北林业大学学报, 2007,35(9):40-41. |
[ Sun H Z, Zhu X M. Comparison of potential evapotranspiration in primary forest and natural secondary forest of Korean pine[J]. Journal of Northeast Forestry University, 2007,35(9):40-41.] | |
[20] |
Amatya D M, Harrison C A. Grass and forest potential evapotranspiration comparison using five methods in the Atlantic coastal plain[J]. Journal of Hydrologic Engineering, 2016, DOI: 10.1061/(ASCE)HE.1943-5584.0001341.
doi: 10.1061/(ASCE)HE.1943-5584.0000515 pmid: 24163575 |
[21] | Rao L Y, Sun G, Ford C R, et al. Modeling potential evapotranspiration of two forested watershieds in the southern appalachians[J]. Transactions of the ASABE, 2011,54(6):2067-2078. |
[22] | Beven K. A sensitivity analysis of the Penman-Monteith actual evapotranspiration estimates[J]. Journal of Hydrology, 1979,44(3):169-190. |
[23] | 邵全琴, 孙朝阳, 刘纪远, 等. 中国城市扩展对气温观测的影响及其高估程度[J]. 地理学报, 2009,64(11):1292-1302. |
[ Shao Q Q, Sun C Y, Liu J Y, et al. Impact of urban expansion on meteorological observation data and overestimation to regional air temperature in China[J]. Acta Geographica Sinica, 2009,64(11):1292-1302.] | |
[24] | 周密, 常鸣, 赖安琪, 等. 未来土地利用类型对珠江三角洲气象场的影响[J]. 中国环境科学, 2017,37(8):2896-2904. |
[ Zhou M, Chang M, Lai A Q, et al. Impacts of future land use on meteorological conditions over the Pearl River Delta Region[J]. China Environmental Science, 2017,37(8):2896-2904.] | |
[25] | 蔡礼蓉, 匡旭, 房帅, 等. 长白山阔叶红松林3个常见树种径向生长的影响因素[J]. 应用生态学报, 2017,28(5):1407-1413. |
[ Cai L R, Kuang X, Fang S, et al. Factors influencing tree radial growth of three common species in broad-leaved Korean pine mixed forests in Changbai Mountains, China[J]. Chinese Journal of Applied Ecology, 2017,28(5):1407-1413.] | |
[26] | 马芳, 王顺忠, 冯金朝, 等. 北京东灵山优势种群树木死亡对空间格局与生境的影响[J]. 生态学报, 2018,38(21):7669-7678. |
[ Ma F, Wang S Z, Feng J C, et al. The study of the effect of tree death on spatial pattern and habitat associations in dominant populations of Dongling Mountains in Beijing[J]. Acta Ecologica Sinica, 2018,38(21):7669-7678.] | |
[27] | 李苗苗. 臭氧对几种楠木气体交换参数的影响[J]. 环境科学, 2015,36(5):1888-1901. |
[ Li M M. Effects of ozone on photosynjournal of several plants[J]. Environmental Science, 2015,36(5):1888-1901.] | |
[28] | 谢宗强, 孙鸿烈, 于贵瑞, 等. 中国生态系统定位观测与研究数据集森林生态系统卷: 湖北神农架站[M]. 北京: 中国农业出版社, 2010. |
[ Xie Z Q, Sun H L, Yu G R, et al. China Ecosystem Positioning Observation and Research Dataset Forest Ecosystem Volume: Hubei Shennongjia Station[M]. Beijing: China Agriculture Press, 2010.] | |
[29] | 刘涛, 孙守琴, 邱阳. 川西亚高山生态系统三种典型植物凋落物分解动态特征[J]. 山地学报, 2017,35(5):663-668. |
[ Liu T, Sun S Q, Qiu Y. Dynamics and differences in the decomposition of litters from three dominating plants in subalpine ecosystems in Western Sichuan, China[J]. Mountain Research, 2017,35(5):663-668.] | |
[30] | 陈蝶聪, 王绍强, 黄昆, 等. 基于通量和光谱观测的中亚热带人工针叶林光能利用效率的反演[J]. 应用生态学报, 2015,26(11):3421-3432. |
[ Chen D C, Wang S Q, Huang K, et al. Estimation of light-use efficiency of China’s mid-subtropical planted coniferous forest based on flux measurements and spectral observations[J]. Chinese Journal of Applied Ecology, 2015,26(11):3421-3432.] | |
[31] | 汪思龙. 中国生态系统定位观测与研究数据集森林生态系统卷: 湖南会同站[M]. 北京: 中国农业出版社, 2012. |
[ Wang S L. China Ecosystem Positioning Observation and Research Dataset Forest Ecosystem Volume: Hunan Huitong Station[M]. Beijing: China Agriculture Press, 2012.] | |
[32] | 张一平, 刘玉洪. 中国生态系统定位观测与研究数据集森林生态系统卷: 云南哀牢山站[M]. 北京: 中国农业出版社, 2011. |
[ Zhang Y P, Liu Y H. China Ecosystem Positioning Observation and Research Dataset Forest Ecosystem Volume: Yunnan Ailaoshan Station[M]. Beijing: China Agriculture Press, 2011.] | |
[33] | 张倩媚. 中国生态系统定位观测与研究数据集森林生态系统卷: 广东鼎湖山站[M]. 北京: 中国农业出版社, 2011. |
[ Zhang Q M. China Ecosystem Positioning Observation and Research Dataset Forest Ecosystem Volume: Guangdong Dinghushan Station[M]. Beijing: China Agriculture Press, 2011.] | |
[34] | 傅声雷, 林永标, 饶兴权, 等. 中国生态系统定位观测与研究数据集森林生态系统卷: 广东鹤山站[M]. 北京: 中国农业出版社, 2011. |
[ Fu S L, Lin Y B, Rao X Q, et al. China Ecosystem Positioning Observation and Research Dataset Forest Ecosystem Volume: Guangdong Heshan Station[M]. Beijing: China Agriculture Press, 2011.] | |
[35] | 邓晓保, 唐建维. 中国生态系统定位观测与研究数据集森林生态系统卷: 云南西双版纳站[M]. 北京: 中国农业出版社, 2010. |
[ Deng X B, Tang J W. China Ecosystem Positioning Observation and Research Dataset Forest Ecosystem Volume: Yunnan Xishuangbanna Station[M]. Beijing: China Agriculture Press, 2010.] | |
[36] | Allen R G, Pereira L S, Raes D, et al. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements: FAO Irrigation and Drainage Paper 56[M]. Rome: FAO (Food and Agriculture Organization), 1998. |
[37] | 贾文雄, 何元庆, 王旭峰, 等. 祁连山及河西走廊潜在蒸发量的时空变化[J]. 水科学进展, 2009,20(2):159-167. |
[ Jia W X, He Y Q, Wang X F, et al. Temporal and spatial change of the potential evaporation over Qilian Mountains and Hexi Corridor from 1960 to 2006[J]. Advances in Water Science, 2009,20(2):159-167.] | |
[38] | Priestley C H B, Taylor R J. On the assessment of surface heat flux and evaporation using large scale parameters[J]. Monthly Weather Review, 1972,100(2):81-92. |
[39] | McCuen R H. The role of sensitivity analysis in hydrologic modeling[J]. Journal of Hydrology, 1973,18(1):37-53. |
[40] |
Roderick M L, Rotstayn L D, Farquhar G D, et al. On the attribution of changing pan evaporation[J]. Geophysical Research Letters, 2007, DOI: 10.1029/2007GL031166.
doi: 10.1029/2019GL083361 pmid: 31598022 |
[41] | Zhang Q, Xu C Y, Chen X. Reference evapotranspiration changes in China: Natural processes or human influences?[J]. Theoretical and Applied Climatology, 2011,103(3-4):479-488. |
[42] | Song Q H, Braeckevelt E, Zhang Y P, et al. Evapotranspiration from a primary subtropical evergreen forest in Southwest China[J]. Ecohydrology, 2017,10(4):e1826. |
[43] |
Olchev A, Novenko E. Estimation of potential and actual evapotranspiration of boreal forest ecosystems in the European part of Russia during the Holocene[J]. Environmental Research Letters, 2011, DOI: 10.1088/1748-9326/6/4/045213.
doi: 10.1088/1748-9326/11/12/120206 pmid: 29682001 |
[44] | ASCE-EWRI. The ASCE Standardized Reference Evapotranspiration Equation[R]. New York: Technical Committee Report, 2005. |
[45] | 吴雪. 城市化进程对气温变化的分析: 以北京、郑州、南京、杭州城市为例[J]. 内蒙古气象, 2019, (3):42-45. |
[ Wu X. Analysis of urbanization process on temperature changes: Taking Beijing, Zhengzhou, Nanjing and Hangzhou as examples[J]. Meteorology Journal of Inner Mongolia, 2019, (3):42-45.] | |
[46] | 杨雅君, 邹振东, 赵文利, 等. 6种城市下垫面热环境效应对比研究[J]. 北京大学学报(自然科学版), 2017,53(5):881-889. |
[ Yang Y J, Zou Z D, Zhao W L, et al. Comparative study on the thermal environment effect of six urban underlying surfaces[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017,53(5):881-889.] | |
[47] | 张功, 郑宁, 张劲松, 等. 人工林冠层的湍流微气象特征[J]. 应用生态学报, 2018,29(6):1787-1796. |
[ Zhang G, Zheng N, Zhang J S, et al. Turbulence micro-meteorological characteristics over the plantation canopy[J]. Chinese Journal of Applied Ecology, 2018,29(6):1787-1796.] | |
[48] | 吴霞, 王培娟, 霍治国, 等. 1961-2015年中国潜在蒸散时空变化特征与成因[J]. 资源科学, 2017,39(5):964-977. |
[ Wu X, Wang P J, Huo Z G, et al. Spatio-temporal distribution characteristics of potential evapotranspiration and impact factors in China from 1961 to 2015[J]. Resources Science, 2017,39(5):964-977.] | |
[49] | 国家林业局. 第八次全国森林资源清查结果[J]. 林业资源管理, 2014, (1):1-2. |
[ State Forestry Administration. Results of the eighth national forest resources inventory[J]. Forest Resources Management, 2014, (1):1-2.] |
[1] | 郭梦瑶, 佘敦先, 张利平, 汤柔馨, 赵鹏雁. 渭河流域潜在蒸散量变化的气候归因[J]. 资源科学, 2020, 42(5): 907-919. |
[2] | 李慧娟, 师长兴, 马小晴, 刘慰. 黄河中游窟野河流域水沙变化影响因素定量评估[J]. 资源科学, 2020, 42(3): 499-507. |
[3] | 刘成, 车达升, 李晓东. 黄渤海海冰分布特征及其影响因子[J]. 资源科学, 2019, 41(6): 1167-1175. |
[4] | 曹永强,刘明阳,李元菲,肖春柳. 不同潜在蒸散发估算方法在辽宁省的适用性分析[J]. 资源科学, 2019, 41(10): 1780-1790. |
[5] | 吴霞, 王培娟, 霍治国, 白月明. 1961-2015年中国潜在蒸散时空变化特征与成因[J]. 资源科学, 2017, 39(5): 964-977. |
[6] | 李佳, 周祖昊, 王浩, 刘佳嘉. 松花江流域最大冻土深度的时空分布及对气温变化的响应[J]. 资源科学, 2017, 39(1): 147-156. |
[7] | 刘兆飞, 王蕊, 姚治君. 蒙古高原气温与降水变化特征及CMIP5气候模式评估[J]. 资源科学, 2016, 38(5): 956-969. |
[8] | 郭媛媛, 江源, 董满宇, 文岩, 王明昌, 焦亮. 1961-2013年华北晋冀山地和黄土高原区树木生长季变化趋势[J]. 资源科学, 2016, 38(4): 758-767. |
[9] | 张万诚, 郑建萌, 马涛, 任菊章. 1961-2012年云南省极端气温时空演变规律研究[J]. 资源科学, 2015, 37(4): 710-722. |
[10] | 何平, 常顺利, 张毓涛, 李翔, 谢锦. 新疆森林游憩区空气负离子浓度时空分布特征及其影响因素[J]. 资源科学, 2015, 37(3): 629-635. |
[11] | 张晓红, 陈兴, 罗连升, 靳莉莉, 王皓. 1960-2008年淮河流域面雨量时空变化及径流响应[J]. 资源科学, 2015, 37(10): 2051-2058. |
[12] | 党素珍, 刘昌明, 王中根, 吴梦莹. 近10 年黑河流域上游积雪时空分布特征及变化趋势[J]. , 2012, 34(8): 1574-1581. |
[13] | 贾绍凤, 吕爱锋, 周玮. 白洋淀流域1959年至2008年山区径流量变化规律及其动因分析[J]. , 2011, 33(7): 1249-1255. |
[14] | 李斌, 李九一, 李丽娟, 梁丽乔, 柳玉梅, 覃驭楚, 曾宏伟. 澜沧江流域潜在蒸散发敏感性分析[J]. , 2011, 33(7): 1256-1263. |
[15] | 程磊, 刘星才, 徐宗学, 左德鹏. 渭河流域潜在蒸散量时空变化及其突变特征[J]. , 2011, 33(5): 975-982. |
|