资源科学 ›› 2020, Vol. 42 ›› Issue (5): 920-932.doi: 10.18402/resci.2020.05.10

• 气候资源 • 上一篇    下一篇

1998—2017年中国典型森林生态系统潜在蒸散的变化趋势及成因

孙婉馨1,2,3, 张黎1,2,4(), 任小丽1,2, 何洪林1,2,4, 吕妍1,2,3, 牛忠恩1,2,3, 常清青1,2,3   

  1. 1.中国科学院地理科学与资源研究所 生态系统网络观测与模拟重点实验室,北京 100101;
    2.国家生态科学数据中心,北京 100101;
    3.中国科学院大学,北京 100049;
    4.中国科学院大学 资源与环境学院,北京 100049
  • 收稿日期:2019-10-07 修回日期:2020-03-07 出版日期:2020-05-25 发布日期:2020-07-25
  • 通讯作者: 张黎
  • 作者简介:孙婉馨,女,河北保定人,硕士生,研究方向为生态系统生态学。E-mail: sunwanxin95@126.com
  • 基金资助:
    国家重点研发计划项目(2016YFC0500204);国家自然科学基金项目(31971512);中国科学院科技服务网络计划项目(KFJ-SW-STS-167)

Trends and influencing factors of potential evapotranspiration in typical forest ecosystems of China during 1998-2017

SUN Wanxin1,2,3, ZHANG Li1,2,4(), REN Xiaoli1,2, HE Honglin1,2,4, Lü Yan1,2,3, NIU Zhongen1,2,3, CHANG Qingqing1,2,3   

  1. 1. Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;
    2. National Ecosystem Science Data Center, Beijing 100101, China;
    3. University of Chinese Academy of Sciences, Beijing 100049, China;
    4. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2019-10-07 Revised:2020-03-07 Online:2020-05-25 Published:2020-07-25
  • Contact: Li ZHANG

摘要:

潜在蒸散(PET)是计算实际蒸散、评价区域干湿状况和合理规划水资源的关键因子。本文基于1998—2017年中国生态系统研究网络(CERN)11个森林生态系统定位研究站的逐日气象数据,分别采用Penman-Monteith和Priestley-Taylor两种方法计算各森林生态系统的潜在蒸散(PET_PMPET_PT),分析近20年潜在蒸散年总量的变化趋势及成因,并量化了基于邻近国家气象站观测数据计算的PET_CMA偏差。两种方法均表明,近20年来7个森林生态系统的潜在蒸散呈下降趋势。风速是长白山温带针阔混交林和鹤山亚热带人工常绿阔叶林潜在蒸散变化的主导因子,而净辐射主导了其他9个森林的潜在蒸散变化。PET_CMA年总量较PET_PM偏高,主要是由于国家气象站下垫面的气温、风速和净辐射均高于森林定位研究站,而相对湿度偏低。北部和东部森林邻近气象站的风速和净辐射变化趋势偏高,导致PET_CMA变化趋势偏高,而其他森林邻近气象站PET_CMA变化趋势偏低主要源自相对湿度变化趋势偏高和净辐射变化趋势偏低。研究可为认识中国森林生态系统潜在蒸散的变化特征及其对气候变化的响应提供参考。

关键词: 潜在蒸散, 森林生态系统, 变化趋势, 气象因子, 中国生态系统研究网络, Penman-Monteith方法, Priestley-Taylor方法

Abstract:

Potential evapotranspiration (PET) is a key factor in calculating actual evapotrans-piration, evaluating regional dry and wet conditions, and water resources management. Using daily meteorological data at 11 typical forest sites of the Chinese Ecosystem Research Network (CERN) in the past 20 years, we estimated PET by both the Penman-Monteith equation and Priestley-Taylor equation, and analyzed the trend of PET and its climate attribution. The results of the two methods indicate that PET in seven typical forest ecosystems in China showed decreasing trends in the past 20 years. Wind speed dominated PET changes in the Changbai Mountain temperate coniferous and broadleaved mixed forest and the He Mountain subtropical artificial evergreen broadleaved forest, while net radiation dominated PET changes in other forests. We also quantified the difference between PET at each forest site (PET_PM) and that estimated by meteorological data from a nearby site of China Meteorological Administration (PET_CMA). On average, PET_CMA is higher than PET_PM, mainly because the meteorological stations are mostly with higher temperature, wind speed, and net radiation, and lower relative humidity than the CERN forest sites. For the forests in northern and eastern China, PET_CMA trends were higher than PET_PM, because the former have higher wind speed and net radiation trends. In contrast, PET_CMA trends were lower than PET_PM for other forests, which are mainly due to their higher trend of relative humidity and lower trend of net radiation. The research can provide a reference for understanding the characteristics of the potential evapotranspiration in China’s forest ecosystems and its response to climate change.

Key words: potential evapotranspiration, forest ecosystems, trends, meteorological factors, Chinese Ecosystem Research Network (CERN), Penman-Monteith method, Priestley-Taylor method